

# CarTech® 304/304L Stainless

### Identification

UNS Number

• S30400/S30403

|                                                | Type Analysis   |                     |                  |  |  |  |  |  |  |  |
|------------------------------------------------|-----------------|---------------------|------------------|--|--|--|--|--|--|--|
| Single figures are nominal except where noted. |                 |                     |                  |  |  |  |  |  |  |  |
| Carbon (Maximum)                               | 0.03 %          | Manganese (Maximum) | 2.00 %           |  |  |  |  |  |  |  |
| Phosphorus (Maximum)                           | 0.045 %         | Sulfur (Maximum)    | 0.030 %          |  |  |  |  |  |  |  |
| Silicon (Maximum)                              | 1.00 %          | Chromium            | 18.00 to 20.00 % |  |  |  |  |  |  |  |
| Nickel                                         | 8.00 to 12.00 % | Iron                | Balance          |  |  |  |  |  |  |  |

# **General Information**

#### Description

CarTech 304/304L is a low-carbon version of CarTech 304.

In this low-carbon austenitic alloy, control of carbon to a maximum of 0.03% has been shown to minimize carbide precipitation during welding. Customers have reported the use of this steel in corrosive service in the as-welded condition.

CarTech 304/304L is suggested for applications requiring a moderate level of improvement in machinability for shorter runs of less complex parts, particularly at larger bar diameters.

Manufacturers interested in realizing the potential economic benefits and lower costs associated with higher machining speeds and lower cycle times should consider CarTech 304/304L Project 70®+ stainless.

Customers have reported that CarTech 304/304L Project 70+ stainless offers significantly improved machinability characteristics over generic 304/304L. This includes up to 50% and higher machining speeds with improved finishes and longer tool life.

#### Applications

CarTech 304/304L stainless should be considered for use in a wide range of food processing, dairy and dyeing industry applications, such as pipelines, buckets, sterilizers and other types of preparation and processing equipment.

### Scaling

The safe scaling temperature for continuous service is 1600°F (871°C).

### **Corrosion Resistance**

Annealed Carpenter Stainless Type 304/304L has proven to be resistant to atmospheric corrosion, foodstuffs, sterilizing solutions, many organic chemicals and dyestuffs, and a wide variety of inorganic chemicals.

For optimum corrosion resistance, surfaces must be free of scale, lubricants, foreign particles, and coatings applied for drawing and heading. After fabrication of parts, cleaning and/or passivation should be considered.

**Important Note:** The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

| Nitric Acid      | Good       | Sulfuric Acid     | Moderate |
|------------------|------------|-------------------|----------|
| Phosphoric Acid  | Moderate   | Acetic Acid       | Moderate |
| Sodium Hydroxide | Moderate   | Salt Spray (NaCl) | Good     |
| Sea Water        | Restricted | Sour Oil/Gas      | Moderate |
| Humidity         | Excellent  |                   |          |

# CarTech<sup>®</sup> 304/304L Stainless

# **Properties**

| Physical Properties              |        |                    |  |  |  |  |  |  |
|----------------------------------|--------|--------------------|--|--|--|--|--|--|
| Specific Gravity                 | 7.90   |                    |  |  |  |  |  |  |
| Density                          | 0.2850 | lb/in <sup>3</sup> |  |  |  |  |  |  |
| Mean Specific Heat (32 to 212°F) | 0.1200 | Btu/lb/°F          |  |  |  |  |  |  |
| Mean CTE (32 to 1200°F)          | 10.4   | x 10 -6 in/in/°F   |  |  |  |  |  |  |
| Electrical Resistivity (73°F)    | 433.0  | ohm-cir-mil/ft     |  |  |  |  |  |  |

### **Typical Mechanical Properties**

Typical Room Temperature Mechanical Properties—Stainless Type 304/304L Annealed condition

| 0.2%<br>Stre | Yield | Ulti<br>Tensile | mate<br>Strength | %<br>Elongation | %<br>Reduction | Brinell  | Izod Impact<br>Strength |     |
|--------------|-------|-----------------|------------------|-----------------|----------------|----------|-------------------------|-----|
| ksi          | MPa   | ksi             | MPa              | in 4D           | of Area        | maraness | ft-lb                   | J   |
| 28           | 193   | 75              | 517              | 60              | 70             | 150      | 110                     | 149 |

### **Heat Treatment**

#### Annealing

Heat to 1850/2050°F (1010/1121°C) and quench in water. Brinell hardness approximately 150.

### Hardening

Cannot be hardened by heat treatment. Can be hardened only by cold working.

### Workability

### Hot Working

Carpenter Stainless Type 304/304L can be readily forged, hot headed, riveted and upset. Because of its high hot hardness, more power for a given reduction is required than with mild steel.

#### Forging

To forge, heat uniformly to 2100/2300°F (1149/1260°C). Do not forge below 1700°F (927°C). Forgings can be air cooled without danger of cracking.

For full corrosion resistance, forgings must be annealed.

#### Cold Working

Carpenter Stainless Type 304/304L is readily fabricated by cold working. Being extremely tough and ductile, it responds to deep drawing, bending, forming and upsetting. After cold working, it is slightly magnetic.

The tensile strength and hardness of Carpenter Stainless Type 304/304L can be materially increased by cold working.

### Machinability

Carpenter Stainless Type 304/304L machines with chip characteristics that are tough and stringy. The use of chip curlers or chip breakers is advised. Since the austenitic stainless steels work harden rapidly, heavy positive feeds should be used.

Following are typical feeds and speeds for Carpenter Stainless Type 304/304L.

## Turning-Single-Point and Box Tools

| Depth    | Hig      | h Speed To | ols   | Carbide Tools (Inserts) |          |        |       |  |
|----------|----------|------------|-------|-------------------------|----------|--------|-------|--|
| of Cut   | Tool     | Speed      | Feed  | Tool                    | Speed    | Feed   |       |  |
| (inches) | Material | (fpm)      | (ipr) | Material                | Uncoated | Coated | (ipr) |  |
| .150     | T15      | 85         | .0010 | C2                      | 350      | 450    | .0010 |  |
| .025     | M42      | 100        | .0050 | C3                      | 400      | 525    | .0005 |  |

# Turning-Cut-Off and Form Tools

| Tool 1                 | Material | -   |             |             |                          | Feed (ipr) |       |                   |       |
|------------------------|----------|-----|-------------|-------------|--------------------------|------------|-------|-------------------|-------|
| High<br>Speed<br>Tools | Speed    | C   | ut-Off Tool | Width (incl | Form Tool Width (inches) |            |       |                   |       |
|                        | Tools    |     | 1/16        | 1/8         | 1/4                      | 1/2        | 1     | 1 <sup>1</sup> /2 | 2     |
| M2                     |          | 75  | .0010       | .0015       | .0017                    | .0015      | .0010 | .0005             | .0005 |
|                        | 00       | 215 | .0040       | .0055       | .0070                    | .0050      | .0010 | .0015             | .0011 |

### Rough Reaming

| High \$          | Speed          | Carbid           | e Tools        | Food (inc) Reamer Diameter (inches) |       |                 |       |       |       |
|------------------|----------------|------------------|----------------|-------------------------------------|-------|-----------------|-------|-------|-------|
| Tool<br>Material | Speed<br>(fpm) | Tool<br>Material | Speed<br>(fpm) | 1/ <sub>8</sub>                     | 1/4   | 1 <sub>12</sub> | 1     | 1 1/2 | 2     |
| M42              | 70             | 62               | ¢£             | .0025                               | .0040 | .0050           | .0100 | .0120 | .0150 |
|                  |                | C2               | 85             | .0025                               | .0040 | .0050           | .0100 | .0120 | .0150 |

### Drilling

|          | High Speed Tools |       |                                                             |       |       |       |       |                   |       |  |  |
|----------|------------------|-------|-------------------------------------------------------------|-------|-------|-------|-------|-------------------|-------|--|--|
| Tool     | Speed<br>(/pm)   |       | Food (Inches per revolution) Nominal Hole Diameter (Inches) |       |       |       |       |                   |       |  |  |
| Material |                  | 1/16  | 1/8                                                         | 1/4   | 1/2   | 3/4   | 1     | 1 <sup>1</sup> /2 | 2     |  |  |
| M2, M42  | 50-60            | .0005 | .0015                                                       | .0020 | .0040 | .0070 | .0100 | .0120             | .0150 |  |  |

# Die Threading

| FPM for High Speed Tools |                |              |               |                |  |  |  |  |  |
|--------------------------|----------------|--------------|---------------|----------------|--|--|--|--|--|
| Tool Material            | 7 or less. tpi | 8 to 15, tpi | 16 to 24, tpi | 25 and up, tpi |  |  |  |  |  |
| M2, M42                  | 6-12           | 10-17        | 15-22         | 20-28          |  |  |  |  |  |

# Milling, End-Peripheral

| Depth<br>of Cut<br>(inches) | Ĭ                | High Speed Tools |                                   |       |       |       |          | Carbide Tools                    |       |                 |       |       |
|-----------------------------|------------------|------------------|-----------------------------------|-------|-------|-------|----------|----------------------------------|-------|-----------------|-------|-------|
|                             | Tool<br>Material | Speed<br>(fpm)   | Feed (kg) Cutter Diameter (notes) |       |       | Tool  | Speed    | Feed (sq Cutter Diameter (sches) |       |                 |       |       |
|                             |                  |                  | 1/4                               | 1/2   | 3/4   | 1-2   | Material | (fpm)                            | 1/4   | 1 <sub>/2</sub> | 3/4   | 1-2   |
| .050                        | M2, M42          | 75               | .0005                             | .0015 | .0020 | .0030 | C2       | 250                              | .0005 | .0015           | .0020 | .0040 |

### Tapping

| 8roa | china |
|------|-------|
| 0.00 |       |

| ••• | s ppmg        |             |   | orocoring            |             |                |  |  |
|-----|---------------|-------------|---|----------------------|-------------|----------------|--|--|
| Γ   | High Spo      | ed Tools    | 1 | High Speed Tools     |             |                |  |  |
| Γ   | Tool Material | Speed (fpm) | 1 | <b>Tool Material</b> | Speed (fpm) | Chip Load (pt) |  |  |
|     | M2, M42       | 10-20       | ] | M2, M42              | 15          | .0020          |  |  |

#### Additional Machinability Notes

When using carbide tools, surface speed feet/minute (SFPM) can be increased between 2 and 3 times over the high-speed suggestions. Feeds can be increased between 50 and 100%.

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

#### Weldability

Carpenter Stainless Type 304/304L can be satisfactorily welded by the shielded fusion and resistance welding processes. Since austenitic welds do not harden on air cooling, the welds should have good toughness.

Oxyacetylene welding is not recommended since carbon pickup in the weld may occur.

The alloy can be welded without danger of loss of corrosion resistance due to intergranular carbide precipitation. Usually the alloy can be used in the as-welded condition; however, for service in the most severe environments, the welded structure should be reannealed.

Where a filler metal is required, AWS E/ER 308 or E/ER 347 welding consumables should be considered.

| Other Information                |                                                                     |  |
|----------------------------------|---------------------------------------------------------------------|--|
| Applicable Specifications        |                                                                     |  |
| • AMS 5639                       | • AMS 5647                                                          |  |
| • AMS 5697                       | • ASTM A182                                                         |  |
| • ASTM A193                      | • ASTM A276                                                         |  |
| • ASTM A314                      | • ASTM A320                                                         |  |
| • ASTM A479                      | • MIL-S-862                                                         |  |
| • QQ-S-763                       | • QQS-W-423                                                         |  |
| Forms Manufactured               |                                                                     |  |
| • Bar-Hexagons                   | • Bar-Rounds                                                        |  |
| Technical Articles               |                                                                     |  |
| • A Designer's Manual On Spec    | Ity Alloys For Critical Automotive Components                       |  |
| • Alloy Selection for Cold Formi | (Part I)                                                            |  |
| • Alloy Selection for Cold Formi | (Part II)                                                           |  |
| • New Ideas for Machining Aust   | itic Stainless Steels                                               |  |
| • New Stainless for Fasteners (  | mbines Corrosion Resistance, High Hardness and Cold Formability     |  |
| Selecting Optimal Stainless S    | els for Bio-Pharmaceutical Service                                  |  |
| • Selecting Stainless Steels for | Ilves                                                               |  |
| • Selection of High Strength Sta | less Steels for Aerospace, Military and Other Critical Applications |  |
| Specialty Alloys And Titanium    | hapes To Consider For Latest Medical Materials Requirements         |  |
| Stainless Steel Rebar For Con    | rete Reinforcement: An Update And Selection Guide                   |  |
| • Steels for Strength and Machi  | bility                                                              |  |

#### Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Edition Date: 07/01/2000

Visit us on the web at www.cartech.com