

CarTech® EnduraMet®® 2205 Stainless

	Identification	
UNS Number		
• S31803		
DIN Number		

• 1.4462

Type Analysis										
Single figures are nominal except wh	Single figures are nominal except where noted.									
Carbon (Maximum)	0.03 %	Manganese (Maximum)	2.00 %							
Phosphorus (Maximum)	0.030 %	Sulfur (Maximum)	0.020 %							
Silicon (Maximum)	1.00 %	Chromium	22.00 %							
Nickel	5.50 %	Molybdenum	3.00 %							
Nitrogen (Maximum)	0.20 %	Iron	Balance							

General Information

Description

CarTech EnduraMet 2205 stainless is a duplex stainless steel that has a microstructure consisting of austenite and ferrite phases. This duplex microstructure and the chemical composition of CarTech EnduraMet 2205 stainless results in an excellent combination of strength and corrosion resistance.

CarTech EnduraMet 2205 stainless has twice the annealed yield strength of typical austenitic stainless steels, like Type 304 and 316. In the hot rolled unannealed condition, yield strength of 75 ksi (518 MPa) or higher can be achieved for bar diameters up to 1.375 in. (34.925mm).

CarTech EnduraMet 2205 stainless possesses good resistance to general corrosion in many acid environments and, has excellent resistance to chloride stress corrosion cracking, pitting and crevice corrosion.

Applications

Rebar has been a primary application for CarTech EnduraMet 2205 stainless. Specific rebar applications have included bridge decks, barrier and retaining walls, anchoring systems, chemical plant infrastructure, coastal piers and wharves, bridge parapets, sidewalks and bridge piling. The higher strength capability, 75 ksi (518 MPa) minimum yield strength, of CarTech EnduraMet 2205 stainless rebar is an added economical advantage.

Other applications for CarTech EnduraMet 2205 stainless have included bridge tie wire and dowels; oil and gas production equipment, such as valves, fittings, shafts, and pump parts; heat exchangers in chemical and pulp and paper plants; and brewery tanks.

Elevated Temperature Use

EnduraMet 2205 stainless is subject to 885 embrittlement when exposed for extended times between about 700 and 1000°F (371 and 538°C).

The alloy is also subject to precipitation of sigma phase when exposed between about 1250 and 1550°F (677 and 843°C) for extended time. Sigma phase increases strength and hardness, but decreases ductility and corrosion resistance.

Corrosion Resistance

EnduraMet 2205 stainless has good resistance to atmospheric corrosion and long-term resistance to general corrosion when embedded in concrete. In the 15 week corrosion macrocell test in simulated concrete pore solution, EnduraMet 2205 stainless had an average corrosion rate less than 0.25 micro-meter/yr.

CarTech® EnduraMet®® 2205 Stainless

Compared to conventional austenitic stainless steels, like Type 304 and 316, EnduraMet 2205 stainless has superior resistance in most oxidizing and reducing acids; superior chloride pitting and crevice corrosion resistance, due to higher chromium, molybdenum and nitrogen content and superior resistance to chloride stress corrosion cracking due to its duplex microstructure.

EnduraMet 2205 stainless has good intergranular corrosion in the as-annealed and as-weld conditions due to its low carbon content.

For optimum corrosion resistance, surfaces must be free of scale, lubricants, foreign particles, and coatings applied for drawing and heading. After fabrication of parts, cleaning and/or passivation should be considered.

Important Note: The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

Nitric Acid	Good	Sulfuric Acid	Moderate
Phosphoric Acid	Moderate	Acetic Acid	Good
Sodium Hydroxide	Moderate	Salt Spray (NaCl)	Excellent
Sea Water	Moderate	Sour Oil/Gas	Moderate
Humidity	Excellent		

Properties									
Physical Properties	hysical Properties								
Specific Gravity									
Annealed	7.80								
As Rolled	7.82								
Density									
Annealed	0.2820 lb/in³								
As Rolled	0.2830 lb/in ³								

CarTech® EnduraMet®® 2205 Stainless

Mean CTE	
77 to 122°F, Annealed	6.22 x 10 ⋅ in/in/°F
77 to 212°F, Annealed	7.11 x 10 ⋅ in/in/°F
77 to 302°F, Annealed	7.29 x 10 ⋅ in/in/°F
77 to 392°F, Annealed	7.53 x 10 ⋅ in/in/°F
77 to 482°F, Annealed	7.72 x 10 ⋅ in/in/°F
77 to 572°F, Annealed	7.86 x 10 ⋅ in/in/°F
77 to 662°F, Annealed	7.97 x 10 ⋅ in/in/°F
77 to 752°F, Annealed	7.99 x 10 ⋅ in/in/°F
77 to 842°F, Annealed	8.12 x 10 ⋅ in/in/°F
77 to 932°F, Annealed	8.23 x 10 ⋅ in/in/°F
77 to 1012°F, Annealed	8.30 x 10 ⋅ in/in/°F
77 to 1112°F, Annealed	8.44 x 10 ⋅ in/in/°F
77 to 1202°F, Annealed	8.57 x 10 ⋅ in/in/°F
77 to 1292°F, Annealed	8.77 x 10 ⋅ in/in/°F
77 to 122°F, Hot Rolled	7.02 x 10 ⋅ in/in/°F
77 to 212°F, Hot Rolled	7.48 x 10 ⋅ in/in/°F
77 to 302°F, Hot Rolled	7.70 x 10 ⋅ in/in/°F
77 to 392°F, Hot Rolled	7.82 x 10 ⋅ in/in/°F
77 to 482°F, Hot Rolled	8.04 x 10 ⋅ in/in/°F
77 to 572°F, Hot Rolled	8.17 x 10 ⋅ in/in/°F
77 to 662°F, Hot Rolled	8.26 x 10 ⋅ in/in/°F
77 to 752°F, Hot Rolled	8.34 x 10 ⋅ in/in/°F
77 to 842°F, Hot Rolled	8.44 x 10 ∘ in/in/°F
77 to 932°F, Hot Rolled	8.53 x 10 ∘ in/in/°F
77 to 1012°F, Hot Rolled	8.57 x 10 ∘ in/in/°F
77 to 1112°F, Hot Rolled	8.68 x 10 ⋅ in/in/°F
77 to 1202°F, Hot Rolled	8.78 x 10 ⋅ in/in/°F
77 to 1292°F, Hot Rolled	8.92 x 10 ∘ in/in/°F

Mean Coefficient of Thermal Expansion – EnduraMet 2205 Stainless

0.5" (12.5 mm) diameter rebar

Test Tem	perature	Hot Rolled	Condition	Annealed Condition		
77°F to 25°C to		10 ⁻⁶ /°F	10 ⁻⁶ /°C	10 ⁻⁶ /°F	10 ⁻⁶ /°C	
122	122 50		12.64	6.22	11.20	
212	100	7.48	13.47	7.11	12.48	
302	150	7.70	13.86	7.29	13.12	
392	200	7.82	14.07	7.53	13.56	
482	250	8.04 14.47		7.72	13.89	
572	300	8.17 14.71		7.86	14.14	
662	350	8.26 14.87		7.97	14.34	
752	400	8.34 15.01		7.99	14.39	
842	450	8.44 15.20		8.12	14.62	
932	500	8.53	15.36	8.23	14.82	
1012	550	8.57	15.42	8.30	14.94	
1112	1112 600		15.63	8.44	15.19	
1202	650	8.78	15.81	8.57	15.42	
1292	700	8.92	16.11	8.77	15.79	

Annealed 1950°F (1066°C) for 1 hour and water quenched. Dilatometer specimens were .250" (6.4 mm) sq. x 2" (50.8 mm) long.

Magnetic Properties

In the annealed and hot rolled conditions, EnduraMet 2205 stainless is ferromagnetic.

Typical Mechanical Properties

CVN Impact Data at Various Test Temperatures - EnduraMet 2205 Stainless

0.5" (12.5 mm) diameter rebar

	Test Ten	perature	Charpy V-Notch Impact Strength			
Condition	°F	°C	ft-lbs	Joules		
As-Rolled	70	21	92	125		
Annealed	70	21	120	163		
As-Rolled	32	0	90	122		
Annealed	32	0	104	141		
As-Rolled	-100	-73	89	121		
Annealed	-100	-73	96	131		

Annealed 1950°F (1066°C) for 1 hour and water quenched.

Sub-size specimens 0.197" x 0.394" (5 mm x 10 mm) per ASTM E23.

Mechanical Properties at Various Test Temperatures – EnduraMet 2205 Stainless

0.5" (12.5 mm) diameter rebar

0.5 (12.5)	Te	est erature	0.2	0.2% Yield Strength To		mate Strength	% Elonga-	% Reduction
	°F	°С	ksi	MPa	ksi	MPa	tion in 4D	of Area
As-Rolled	-100	-73	127	875	159	1100	63.0	80.5
Annealed	-100	-73	90	621	144	994	70.5	81.0
As-Rolled	70	21	97	670	131	903	42.3	84.3
Annealed	70	21	70	480	113	777	50.1	85.3
As-Rolled	400	204	75	75 519		728	35.6	81.6
Annealed	400	204	51	350	93	640	40.6	80.4

Annealed 1950°F (1066°C) for 1 hour and water quenched.

Standard 0.250" (6.4 mm) gage diameter tensile specimens.

RR Moore Rotating Beam Fatigue Tests – EnduraMet 2205 Stainless

0.5" (12.5 mm) diameter rebar

	Hot Rolled	Condition	Annealed Condition			
Test 9	Stress	Cycles to	Tes	t Stress	Cuples to Fracture	
ksi MPa		Fracture	ksi MPa		Cycles to Fracture	
40	276	1.5 x 10 ⁷ (NF)	35	242	2.1 x 10 ⁷ NF	
50	345	1.3 x 10 ⁷ (NF)	50	345	1.3 x 10 ⁷ NF	
60	414	1.4 x 10 ⁷ (NF)	60	414	1.4 x 10 ⁷ NF	
70	483	1.4 x 10 ⁷ (NF)	65	449	1.2 x 10 ⁷ NF	
80	552	2.6 x 10 ⁷ (NF)	67.5	466	1.3 x 10 ⁵	
90	621	3.7 x 10 ⁴	70	483	1.2 x 10⁵	

Annealed 1950°F (1066°C) for 1 hour and water quenched. NF indicates test was terminated without specimen fracturing. Standard 0.250" (6.4 mm) gage diameter fatigue specimens.

Endurance Limit at 10⁷ cycles: 80 ksi (552 MPa) hot rolled condition. 65 ksi (449 MPa) annealed condition.

Typical Room Temperature Hot Rolled Mechanical Properties – EnduraMet 2205 Stainless

Samples were full-section rebar

Bar Size		Rebar	Rebar # 0.2% Yield Strength		Ultimate Stre		% Elongation in	
in	in mm		ksi	MPa	ksi	MPa	8" (203 mm)	
0.5	12.7	4	92.5	638	126 869		26.8	
0.625	15.9	5	90.5	624	126.5	873	29.7	
0.750	19.1	6	90.0	621	120.5	831	29.0	
1.250	31.8	10	86.0	593	120.0	828	28.3	
1.375	34.9	11	86.0	593	119.0	814	31.8	

Heat Treatment

Annealing

Heat to 1850/2050°F (1010/1121°C) and rapidly quench in water or air. Typical hardness as-annealed is HRC 20.

Hardening

Cannot be hardened by heat treatment. Can be hardened only by cold working.

Workability

Hot rolling and controlling the finishing temperature can strengthen EnduraMet 2205 stainless bar. After hot rolling, bars are not annealed.

Hot Working

Heat uniformly to 2000/2100°F (1093/1149°C). Reheat as often as necessary. Cool forgings in air.

Cold Working

Cold working increases strength and hardness. Work hardening rate is lower than Type 304; however, the annealed strength is significantly higher.

Machinability

The machinability of EnduraMet 2205 stainless generally has been between that of conventional Type 316 stainless and Carpenter 22Cr-13Ni-5Mn stainless.

The following chart includes typical machining parameters used to machine EnduraMet 2205 stainless. The data listed should be used as a guide for initial machine setup only.

Typical Machining Speeds and Feeds – EnduraMet 2205 Stainless

The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

Turning-Single-Point and Box Tools

Depth	ŀ	ligh Speed Tool	Carbide Tools (Inserts)				
of Cut	Tool	ol		Tool	Speed (fpm)		Feed
(Inches)	Material	Speed (fpm)	Feed (ipr)	Material	Uncoated	Coated	(ipr)
.150	T15	85	.015	C2	350	450	.015
.025	M42	100	.007	C3	400	525	.007

Turning-Cut-Off and Form Tools

Taning Cat Change Cat										
Tool Ma	aterial		Feed (ipr)							
High	Car-	Speed	Cut-Off Tool Width (Inches)			Form Tool Width (Inches)				
Speed	bide	(fpm)	1/16	1/8	1/4	1/	2	1	11/2	2
Tools	Tools		1710	120	174	11	-	'	172	_
M2		75	.001	.0015	.002	.00	15	.001	.001	.001
	C2	275	.004	.0055	.007	.00)5	.004	.0035	.0035

Rough Reaming

High Speed Carbide Tools		Feed (ipr) Reamer Diameter (Inches)								
	Tool Material	Speed (fpm)	Tool Material	Speed (fpm)	1/8	1/4	1/2	1	11/2	2
	M7	70	C2	90	.003	.005	.008	.012	.015	.018

Drilling

Diminig	zining									
	High Speed Tools									
Tool	Tool Connect		Feed (inches per revolution) Nominal Hole Diameter (inches)							
Material	Speed (fpm)	1/16	1/8	1/4	1/2	3/4	1	1 1/2	2	
M7, M10	50-60	.001	.002	.004	.007	.010	.012	.015	.018	

Die Threading

FPM for High Speed Tools					
Tool Material	7 or less, tpi	8 to 15, tpi	16 to 24, tpi	25 and up, tpi	
M1, M2, M7, M10	8-15	10-20	15-25	25-30	

Milling, End-Peripheral

Depti	Depts High Speed Tools				Carbide Tools							
ofCit	Tool	Speed	Feed	(po) Cutte	r Diamet	er (li)	Tool	Speed	Feed (յ թֆ, Cutte	er Diame	ater (N)
(holes)	Material	(tpm)	1/4	1/2	3/4	1-2	Material	(tpm)	1/4	1/2	3/4	1-2
.050	М2, М7	75	.001	.002	.003	.004	C2	270	.001	.002	.003	.005

Tapping

High Sp	eed Tools	
Tool Material	Speed (tpm)	Tool Mate
M1, M7, M10	12-25	M2, M7

Broaching

High Speed Tools						
Tool Material Speed (fpm) Chip Load (ipf						
M2, M7	15	.003				

Weldability

EnduraMet 2205 stainless has been welded using many of the standard electric arc welding processes. Autogeneous welding will increase the amount of ferrite present in the weldement and heat affected zone. When a filler metal is required, consider AWS E/ER 2209.

Oxyacetylene welding is not recommended, because carbon pickup in the weld may occur.

Postweld annealing is not required for most applications, but will provide optimum properties for severe service.

Other Information					
Applicable Specifications					
• ASME SA479	• ASTM A240				
• ASTM A276	• ASTM A479				
• ASTM A955M	• BS 6744: 2001				
NACE MR0175					
Forms Manufactured					
Bar-Rounds	• Billet				
Rebar or (Bar-Reinforcing)	• Strip				
• Wire	• Wire-Rod				

Technical Articles

- Extending the Life of Concrete Structures with Solid Stainless Steel Reinforcing Bar
- · Stainless Steel Rebar For Concrete Reinforcement: An Update And Selection Guide

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 1/30/12