

CarTech[®] M10 High Speed Steel

	Identification	
UNS Number		
• T11310		
AISI Number		
• Type M10		

	Type Analysis									
Single figures are nominal e	except where noted.									
Carbon	0.85 %	Manganese	0.20 %							
Silicon	0.30 %	Chromium	4.00 %							
Molybdenum	8.00 %	Vanadium	2.00 %							
Iron	Balance									

General Information

Description

CarTech M10 high speed steel is a general purpose molybdenum-bearing high speed steel possessing excellent wear resistance and cutting properties. The increased wear resistance and cutting ability of this electroslag remelted high speed steel are a result of its high vanadium and carbon content.

Applications

Typical applications for CarTech M10 high speed steel have included:

Blanking dies Broaches Chasers Counterbores Drills Form cutters Hobs Lathe tools Milling cutters Planer tools Punches Reamers Shear blades Taps Trimming dies Cutting tools

Heat Treatment

Decarburization

While Ten Star high speed steel is somewhat susceptible to decarburization in hardening, means of preventing this are well known. If proper control of atmosphere is maintained, Ten Star high speed steel will present no difficulty with decarburization.

Normalizing

Normalizing is not recommended.

Annealing

Pack in a suitable container with clean cast iron borings, heat uniformly to 1550/1600°F (843/871°C) and cool slowly in the furnace to 1200°F (649°C) at a rate of 20/40° (11/22°C) per hour. Average Brinell hardness 207/248.

CarTech[®] M10 High Speed Steel

To relieve machining stresses for greater accuracy in hardening - first, rough machine, then anneal in the temperature range of 1250°/1300°F (677/704°C) and cool slowly - then finish machine.

Hardening

Ten Star high speed steel should be heat treated from neutral salt baths or properly adjusted controlled atmosphere furnaces. A dew point of +10°F (-12°C) is suggested for the high heat furnace when using controlled atmosphere.

First, preheat to 1400/1500°F (760/816°C), then transfer to a superheating furnace with a temperature maintained at 2150/2225°F (1177/1218°C). When neutral salt baths are used for hardening, the temperature should be dropped 25°F (14°C) as compared to other furnace temperatures.

Exercising the usual control of temperature and atmosphere, there should be no difficulty with decarburization.

Quench in oil - and be sure that tools are cooled below 200°F (93°C) before tempering (cool enough to hold in your hand).

Small sizes under about 1" (25.4 mm) in diameter or delicate sections may be hardened by cooling in still air. It is also acceptable to quench in molten salt at about 1000/1100°F (538/593°C), equalizing for about 5 minutes per inch followed by air cooling.

Deformation (Size Change) in Hardening

Ten Star high speed steel changes size slightly on hardening. A 1" (25.4 mm) cube will expand about 0.0005" (0.013 mm) in hardening at 2200°F (1204°C), and will expand a like amount when tempered at 1000°F (538°C). Cutters and form tools will open up slightly in the hole, and expand slightly on the OD.

Tempering

Be sure to allow sufficient time for the tool to reach the proper temperature and then start timing the tempering operation.

Tools should be tempered immediately after the completion of the quench. For best results with most tools, a range of 1000/1200°F (538/649°C) is suggested. For cutting tools, double or triple temper at 1000/1050°F (538/566°C) where maximum wear resistance is desired. The effect of various tempering temperatures on the Rockwell hardness is shown in the hyperlink entitled "Effect of Tempering Temperature on Hardness."

Effect of Tempering Temperature on Hardness - Ten Star High Speed Steel Average values - Rockwell C scale.

	Temperature at Heat	Hardening Temperature 2200° F (1204°C) 5 Minutes in Salt and Oil Quenched
۴F	°C	5 minutes in our and on deenched
As har	dened	65
800	427	61/62
900	482	62/63
1000	538	65
1050	566	64
1100	593	62
1200	649	55/56

Workability

Forging

Preheat very slowly to 1500/1600°F (816/871°C), then increase furnace temperature to full heat of 1950/2050°F (1066/1121°C). Do not forge under 1700°F (927°C). Reheat as often as necessary. Forgings should be cooled slowly in lime or ashes. Cool to at least 400°F (204°C) before reheating for annealing.

Machinability

Ten Star high speed steel is carefully annealed to produce the best machinability possible in this type of steel. It will machine somewhat easier than the 18-4-1 type. Its machinability rating is approximately 45% of a 1% carbon tool steel or 33% of AISI B1112 screw stock.

Following are typical feeds and speeds for Ten Star high speed steel.

CarTech® M10 High Speed Steel

	Hig	gh Speed To	ols		Carbid	e Tools	
Depth				Speed, fpm		Fred	7-1
of	Speed,	Feed,	Tool	Brazed	Throw	Feed,	Tool
Cut In.	fpm	ipr	Material		Away	ipr	Material
.150	60	.015	M-42	225	280	.015	C-6
	75	.007	M-42	280	370	.007	C-7

Turning-Single Point and Box Tools

Turning-Cut-Off and Form Tools

			Feed,	Inches per	r Rev.			
Speed, fpm		Cut-Off Too /idth, Inche		Form Tool Width, Inches			Tool Material	
	1/16	1/8	1/4	1/2	1	1-1/2	2	
60 220	.001 .002	.001 .003	.0015 .0045	.0015 .003	.001 .002	.0007 .0015	.0007 .0015	M-2 C-6

Drilling

			Fe	ed, Inch	es per Re	v.			Tool	
Speed, fpm		Nominal Hole Diameter, Inches								
.p	1/16	1/8	1/4	1/2	3/4	1	1-1/2	2	Material	
45	.001	.002	.003	.005	.007	.009	.011	.013	M-1; M-10	

Tapping

Speed, fpm	Tool Material
25	M-1; M-7; M-10

Reaming

				Carbide Tools						
		F	eed, Inch							
Speed, fpm		Reamer Dia					Material	Speed,		Tool Material
.b	1/8	1/4	1/2	1	1-1/2	2	material			material
45	.003	.005	.008	.012	.015	.018	M-1;M-2;M-7	150	C-2	

Die Threading

	Speed, fpm							
7 or Less	8 to 15	16 to 24	25 and up, T.P.I.	Tool Material				
8-12	12-18	18-25	20-30	M-1; M-2; M-7; M-10				

Milling-End Peripheral

	High Speed Tools				Carbide Tools			
Depth	Fee	Feed-inches per tooth		0	Feed—Inches per tooth			
Additional Mach	mability No	^{es} Diameter,	Inches	Tool	Speed,	Cutter Diameter, Incl	hes Mate	
Figures used f	or all metal	removal op	erations	covered	are averag	e. On certain work, t	the nature of	rial of the part may require adjustment of
speeds and fe increased or d	eds. Each j	ob has to be	develo	ped for be M-2; M-7	st product 275	ion results with optin .0015 .0025 .004	num tool lif 005 C-t	e. Speeds and feeds should be

	Other Inform	ation
opeou, ipin	outh road manage ber room	
Applicable Specifications	.002	M-42
• ASTM A600	• QQ-T-590	

Sawing—Power Hack Saw

	Feed	Speed	Pitch—Teeth per Inch					
Page: 3			Material Thickness, Inches					
	Inches/Stroke	Strokes/Minute	Over 2	3/4-2	1/4-3/4	Under 1/4		
	.006	70	4	6	10	10		

Forms Manufactured

Bar-Rounds

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 01/01/1990