BioDur® CCM Alloys

Excellent wear resistance, high-strength, corrosion-resistant alloys ideal for articulating applications where wear or fatigue properties are of major importance or where intricate high strength forgings are required.

BioDur® CCM is a non-magnetic cobalt-chromium-molybdenum

alloy produced by vacuum induction melting (VIM) followed by electroslag remelting (ESR). The finished mill product is supplied in the annealed, hot worked, or warm worked condition.

Micro-Melt® BioDur® CCM Plus® offers elevated carbon levels

to increase strength and stiffness and is ideal for high wear applications requiring higher strength.

GADS Vitallium uses powder dispersion techniques to increase

fatigue strength to approximate 2x of standard CCM"

KEY FEATURES

INDUSTRY NAME	CRS ALLOY NAME	PROPERTIES	APPLICATIONS
ASTM F1537 Alloy 1	BioDur® CCM	Good ductility	Aerospace bushing and bearings
		Excellent corrosion resistance	Medical implants needing wear + corrosion resistance
		Excellent wear resistance	
	Micro-Melt® BioDur® CCM	Smaller bar sizes utilize this alloy, drives enhanced homogeneity in the product and increased process-ability	Same as above, but higher toughness and consistency
	Micro-Melt® BioDur® CCM Low Nickel	Properties of BioDur CCM with minimized Ni additions	Same as above, but when Ni avoidance is preferred
N/A "1537 Alloy 1.5"	BioDur® CCM-MC	A medium carbon variant, officially as a subset of Alloy 2	CCM designed to be more compatible with additive manufacturing (AM) processes
ASTM F1537 Alloy 2	Micro-Melt® BioDur® CCM Plus®	Elevated carbon levels increase strength and stiffness	High wear applications requiring higher strength
	Micro-Melt® BioDur® CCM Plus® Low Nickel	Properties of higher strength BioDur CCM Plus with minimized Ni additions	Same as above, but when Ni avoidance is preferred
	Micro-Melt® BioDur® CCM Plus® Mod	Modified to have higher process-ability, formability, etc.	[Not offered, currently under redesign]
ASTM F1537 Alloy 3	GADS Vitallium	Uses powder blending techniques to gain dispersion strengthening	Used to increase fatigue strength to approximately 2x level of standard CCM

© 2025 CRS Holdings LLC. All rights reserved. v 11-25

