

CarTech[®] 15Cr-5Ni Stainless

Identification

UNS Number

• S15500

Type Analysis										
Single figures are nominal except where noted.										
Carbon (Maximum)	0.07 %	Manganese (Maximum)	1.00 %							
Phosphorus (Maximum)	0.040 %	Sulfur (Maximum)	0.015 %							
Silicon (Maximum)	1.00 %	Chromium	14.00 to 15.50 %							
Nickel	3.50 to 5.50 %	Copper	2.50 to 4.50 %							
Columbium + Tantalum	0.15 to 0.45 %	Iron	Balance							

General Information

Description

CarTech 15Cr-5Ni is a martensitic precipitation hardening stainless steel offering high strength and hardness along with excellent corrosion resistance. Generally similar to CarTech Custom 630 (17Cr-4Ni) in composition and properties, CarTech 15Cr-5Ni is chemically balanced to eliminate all but trace amounts of delta ferrite, thus providing superior transverse toughness and ductility plus a high degree of forgeability.

CarTech 15Cr-5Ni has fabrication characteristics similar to those of other precipitation hardening stainlesses, and can be aged-hardened by a single step, low temperature treatment.

It has been used for applications requiring high transverse strength and toughness, such as valve parts, fittings and fasteners, shafts, gears, engine parts, chemical process equipment, paper mill equipment, aircraft components and nuclear reactor components.

Elevated Temperature Use

15Cr-5Ni alloy has displayed excellent resistance to oxidation up to approximately 1100°F (593°C). Long-term exposure to elevated temperatures can result in reduced toughness in precipitation hardenable stainless steels. The reduction in toughness can be minimized in some cases by using higher aging temperatures. Short exposures to elevated temperatures can be considered, provided the maximum temperature is at least 50°F (28°C) less than the aging temperature.

Corrosion Resistance

The general-corrosion resistance of Carpenter 15Cr-5Ni alloy is comparable to that of Type 304 and similar to that of Carpenter Custom 630 (17Cr-4Ni) in most media. Good resistance to stress-corrosion cracking is gained by hardening at temperatures of 1025°F (551°C) and higher. Compared to Carpenter Custom 630 (17Cr-4Ni), Carpenter 15Cr-5Ni alloy shows substantially better stress-corrosion-cracking resistance in boiling 42% MgCl2 solution and slightly superior resistance in H2S NaCl-Acetic Acid solutions. Erosion-corrosion resistance of Carpenter 15Cr-5Ni is also good due to its good combination of corrosion resistance and high hardness.

For optimum corrosion resistance, surfaces must be free of scale, coatings applied for drawing and heading, lubricants, and foreign particles. After fabrication of parts, cleaning and/or passivation should be considered.

CarTech® 15Cr-5Ni Stainless

Important Note: The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

Nitric Acid	Good	Sulfuric Acid	Restricted
Phosphoric Acid	Restricted	Acetic Acid	Moderate
Sodium Hydroxide	Moderate	Salt Spray (NaCl)	Good
Sea Water	Restricted	Humidity	Excellent

Typical General-Corrosion Resistance

Condition	5 w/o Salt Spray Fog at 95°F (35°C) 10 Days	Boiling 65 w/o HNO ₃ Average of 5 48-Hr. Periods mpy	1 w/o HC1 at 95°F (35°C) Average of 5 48-Hr. Periods mpy
H 900	0% rust	100	25
H 1025	0-5% rust	127	85
H 1150	0-5% rust	100	730

Properties

Physical Properties

, , , , , , , , , , , , , , , , , , ,		
Specific Gravity		_
Condition A	7.75	
Condition H 1075	7.81	
Condition H 1150	7.82	
Condition H 900	7.80	
Density		
Condition A	0.2800 lb/in ³	
Condition H 900	0.2820 lb/in ³	
Condition H 1075	0.2820 lb/in ³	
Condition H 1150	0.2830 lb/in ³	
Mean Specific Heat		
32 to 212°F, Condition A	0.1100 Btu/lb/°F	
32 to 212°F, Condition H 900	0.1000 Btu/lb/°F	
Mean CTE		
70 to 200°F, Condition A	6.00 x 10 ∘ in/in/°F	
70 to 400°F, Condition A	6.00 x 10 ∘ in/in/°F	
70 to 600°F, Condition A	6.20 x 10 ∘ in/in/°F	
70 to 800°F, Condition A	6.30 x 10 ₅ in/in/°F	
-100 to 70°F, Condition H 900	5.80 x 10 ₅ in/in/°F	
70 to 200°F, Condition H 900	6.00 x 10 ₅ in/in/°F	
70 to 400°F, Condition H 900	6.00 x 10 ₅ in/in/°F	
70 to 600°F, Condition H 900	6.30 x 10 ₅ in/in/°F	
70 to 800°F, Condition H 900	6.50 x 10 ₅ in/in/°F	
70 to 200°F, Condition H 1075	6.30 x 10 ₅ in/in/°F	
70 to 400°F, Condition H 1075	6.50 x 10 ₅ in/in/°F	
70 to 600°F, Condition H 1075	6.60 x 10 ₅ in/in/°F	
70 to 800°F, Condition H 1075	6.80 x 10 ₀ in/in/°F	
-100 to 70°F, Condition H 1150	6.10 x 10 ₀ in/in/°F	
70 to 200°F, Condition H 1150	6.60 x 10 ₀ in/in/°F	
70 to 400°F, Condition H 1150	6.90 x 10 ₀ in/in/°F	
70 to 600°F, Condition H 1150	7.10 x 10 ^₅ in/in/°F	
70 to 800°F, Condition H 1150	7.20 x 10 ₅ in/in/°F	
70 to 900°F, Condition H 1150	7.30 x 10 ₅ in/in/°F	

CarTech® 15Cr-5Ni Stainless

Thermal Conductivity	
300°F, Condition H 900	124.0 BTU-in/hr/ft²/°F
500°F, Condition H 900	135.0 BTU-in/hr/ft²/°F
860°F, Condition H 900	156.0 BTU-in/hr/ft²/°F
900°F, Condition H 900	157.0 BTU-in/hr/ft²/°F
Poisson's Ratio	
Condition H 900	0.272
Condition H 1075	0.272
Condition H 1150	0.272
Modulus of Elasticity (E)	
72°F, Condition H 900, Longitudinal	28.7 x 10 ₃ ksi
100°F, Condition H 900, Longitudinal	28.5 x 10 ³ ksi
199°F, Condition H 900, Longitudinal	28.0 x 10 ³ ksi
300°F, Condition H 900, Longitudinal	27.6 x 10 ₃ ksi
399°F, Condition H 900, Longitudinal	27.1 x 10 ₃ ksi
500°F, Condition H 900, Longitudinal	26.7 x 10 ³ ksi
601°F, Condition H 900, Longitudinal	26.2 x 10 ³ ksi
Modulus of Rigidity (G)	
73°F, Condition H 900, Longitudinal	11.2 x 10 ₃ ksi
73°F, Condition H 1025, Longitudinal	11.0 x 10 ₃ ksi
73°F, Condition H 1075, Longitudinal	10.0 x 10 ₃ ksi
73°F, Condition H 1150, Longitudinal	10.0 x 10 ³ ksi
Electrical Resistivity	

73°F, Condition A

^{589.0} ohm-cir-mil/ft463.0 ohm-cir-mil/ft

Con	dition	1	A	H	900	H 1	075	H 1150	
Specific gravi	ty	7.7	75	7.8	30	7.8	1	7.82	
Density—Ib/in kg/n	u, ¹ ,	0.2	280 750	0.2 78	282 00	0.282 7810		0.283	
Mean Spe	cific Heat	Btu/lb• °F	J/kg+K	Btu/ib• °F	J/kg•K				
32 to 212°F (0	to 100°C)	0.11	460	0.10	419	-	-	-	-
Electrical resi ohm-cir mil/f microhm-mm	tivity (RT) t 1	5	89 80	40	53 70	-	-	-	_
Mean Coe Thermal E	Mean Coefficient of Thermal Expansion		10*/K	10*/°F	104/K	10*/°F	10⁴/K	104/°F	10⁴/K
-100 to 70°F (70 to 200°F 70 to 400°F 70 to 600°F 70 to 800°F 70 to 900°F	-100 to 70°F (-73 to 21°C) 70 to 200°F (21 to 93°C) 70 to 400°F (21 to 204°C) 70 to 600°F (21 to 316°C) 70 to 800°F (21 to 316°C) 70 to 800°F (21 to 427°C) 70 to 900°F (21 to 482°C)			5.8 6.0 6.3 6.5	10.4 10.8 10.8 11.3 11.7 —	 6.3 6.5 6.6 6.8 		6.1 6.6 6.9 7.1 7.2 7.3	11.0 11.9 12.4 12.8 13.0 13.1
Thermal Co °F	onductivity			Btu-in/	W/m•K				
300 500 860 900	149 260 460 482	-	-	124 135 156 157	17.9 19.5 22.5 22.6	 			
Poisson's Rat	io	-	-	0.2	72	0.272		0.272	

Modulus of Elasticity and Rigidity-See Mechanical Properties.

^{73°}F, Condition H 900

Typical Mechanical Properties

Cryogenic Mechanical Properties:

Carpenter 15Cr-5Ni alloy retains satisfactory levels of ductility at cryogenic temperatures, the best cryogenic performance being obtained on material aged at the higher aging temperatures. The best notch toughness at cryogenic temperatures for the alloy is obtained with the H 1150M condition.

Typical Mechanical Properties Longitudinal direction, intermediate location

Condition	0. Yi Stre	2% eld rogth	UNI Ter Stre	male Isile Ingth	Elengation in 2" (50.8 mm)	% Reduction of Area	Hardi	1855	Charpy V-Notch Mod Impact Elastic Strength		lus of ity (E)*	Modelus of [†] Rigidity (G)		
	ksi	MPa	ksi	MPa			Rockwell C	Brinell	ft-lb	J	ksi	MPa	ksi	MPa
4 H 900 H 925 H 1025 H 1075 H 1100 H 1150 H 1150M						 50 54 56 58 58 60 68	35 44 38 36 34 33 27	341 420 409 352 341 332 311 277			28.5x10 ³ 	197.6x10* 		

acompressive yield strength for Condition H 900 is 178 ksi (1228 MPa)

*The modulus values for 15Cr-5Ni alloy at elevated temperature can be conveniently expressed as a percent of the room temperature values as follows:

72°F(2	22°C)-	100.0%
100°F(38°C)-	-99.6%
200°F(93°C)-	-97.8%

400°F(204°C)—94.7% 500°F(260°C)—93.0% 600°F(316°C)—91.4%

Typical Room Temperature Mechanical Properties Transverse direction, intermediate location

Condition	0.2% Yield Strength		Ultimate Tensile Strength		% Elongation in 2" (50.8 mm)	% Reduction of Area	Hardness		Charpy Impact S	V-Notch Strength
	ksi	MPa	ksi	MPa			Rockwell C	Brinell	ft-lb	J
H 900 H 925 H 1025 H 1075 H 1100 H 1150 H 1150	185 175 165 150 135 125 85	1276 1207 1138 1035 931 862 584	200 190 170 165 150 145 125	1378 1309 1173 1138 1035 1000 862	10 11 12 13 14 15 18	30 35 42 43 44 45 50	44 42 38 36 34 33 27	420 409 352 341 332 311 277	7 17 27 30 30 50 100	10 23 37 41 41 63 136

Typical Room Temperature Mechanical Properties of Consumable-Electrode-Remelted Material

Longitudinal direction, intermediate location of 12" (305 mm) square billet

Condition	0.2% Stre	Yield	Ulti Ter Stre	mate nsile ength	% Elongation in 2" (50.8 mm)	% Reduction of Area	Rockwell C Hardness	Charpy V-Notcl Impact Strengt	
	ksi	MPa	ksi	MPa				ft-lb	J
A H 900 H 1025 H 1150	130 178 158 116	897 1228 1090 800	162 192 164 139	1118 1325 1132 959	13 12 14 20	56 47 62 69	32 41 36 29	6. 30 80	 8 41 109

*This cannot be considered as a minimum impact value for this condition. If toughness is a design criterion, this heat treatment should be used with caution.

Typical Room Temperature Mechanical Properties of Consumable-Electrode-Remelted Material

Transverse direction, intermediate location of 12" (305 mm) square billet

Condition	0.2% Stre	Yield	Ultin Ter Stre	mate isile ngth	% Elongation in 2" (50.8 mm)	% Reduction of Area	Rockwell C Hardness	Charpy V-Notch Impact Strength	
	ksi	MPa	ksi	MPa				ft·lb	J
H 900 H 1025 H 1150	178 159 115	1228 1097 793	193 164 138	1332 1132 952	11 14 20	46 57 64	41 36 29	6* 25 70	8 34 95

*This cannot be considered as a minimum impact value for this condition. If toughness is a design criterion, this heat treatment should be used with caution.

Typical Room Temperature Torsional Properties

Condition	Unit Shear Strength (at elastic limit)		Modulus o	of Rupture	Modulus of Rigidity (G)		
	ksi	MPa	ksi	MPa	ksi	MPa	
H 900 H 1025 H 1075 H 1150	98 86 68 43	676 593 469 297	171 141 135 124	1180 973 931 856	11.2x10 ³ 11.0x10 ³ 10.0x10 ³ 10.0x10 ³	77.3x10 ³ 75.9x10 ³ 69.0x10 ³ 69.0x10 ³	

Heat Treatment

Carpenter 15Cr-5Ni is normally supplied in the solution-treated condition (Condition A). It can be hardened by heating solution-treated material to a temperature of 900°F (482°C) to 1150°F (621°C) for one to four hours, depending on the temperature, then air cooling.

Solution Treatment

Heat at 1900°F (1038°C) ±25°F (±14°C), for ½ hour, cool to below 90°F (32°C) so that the material is completely transformed to martensite. Sections under 3" (76 mm) can be oil quenched and sections over 3" (76 mm) should be rapidly air cooled.

Do not use in this condition without age hardening due to low toughness, poor impact strength and susceptibility to stress-corrosion cracking.

Deformation (Size Change) in Hardening

Upon aging, a predictable size change will occur for 15Cr-5Ni. For the H 900 treatment, a contraction of 0.0004 to 0.0006 in./in. (m/m) is obtained. Aging at 1150°F (621°C) causes a contraction of 0.0008 to 0.0010 in./in. (m/m).

Age

Heat Treatment - Condition H 900

(Precipitation or Age Hardened): Heat solution-treated material at 900°F (482°C) for 1 hour and air cool.

Heat Treatment - H 925, H 1025, H 1075, H 1100, H 1150

(Precipitation or Age Hardened): Heat solution-treated material at specified temperature ±15°F (±8°C) for 4 hours and air cool.

Heat Treatment - Condition H 1150M

(Precipitation or Age Hardened): Heat solution-treated material at 1400°F (760°C) ±15°F (±8°C) for 2 hours, air cool; then heat at 1150°F (621°C) ±15°F (±8°C) for 4 hours and air cool.

Workability

Hot Working

Carpenter 15Cr-5Ni alloy can be readily forged, hot headed and upset. Material which is hot worked must be solution treated prior to hardening if the material is to respond properly to hardening.

Forging

Heat uniformly to 2150/2200°F (1177/1204°C) and hold one hour at temperature before forging. Do not forge below 1850° F (1010°C). To obtain optimum grain size and mechanical properties, forgings should be cooled in air to below 90°F (32°C) before further processing. Forgings must be solution treated prior to hardening.

Cold Working

Carpenter 15Cr-5Ni alloy can be fabricated by cold working (i.e., heading, rolling, etc.) to an extent which is limited by the high initial yield strength. This alloy is generally used in the form of bars and forgings not requiring much forming.

Machinability

Carpenter 15Cr-5Ni alloy is readily machined in both the solution-treated and various age-hardened conditions. In the solution-treated condition, it machines similarly to stainless Types 302 and 304. The machinability will improve as the hardening temperature is increased.

Condition H 1150M provides optimum machinability. Having procured condition H 1150M for best machinability, higher mechanical properties can only be developed by solution treating and heat treating at standard hardening temperatures.

Following are typical feeds and speeds for Carpenter 15Cr-5Ni alloy.

Typical Machining Speeds and Feeds – Carpenter 15Cr-5Ni

The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

Turning—Single-point and Box Tools

Depth	Micro-Melt@	Powder I	HS Tools	Carbide Tools (Inserts)							
ofCut	Tool	Speed	Speed Feed (inr)		Speed	(fpm)	Feed (inr)				
(Inches)	Material	(fpm)	r ccu (ipr)	r coa (ipr)	r coa (ipr)	n) Material	Uncoated	Coated	r cca (ipr)		
Annealed											
.150	M48, T15	72	.015	C6	270	350	.010				
.025	M48, T15	84	84 .007		325	425	.005				
I .	Aged										
.150	M48, T15	48	.010	C6	190	250	.010				
.025	M48, T15	54	.005	C7	225	290	.005				

Turning—Cut-Off and Form Tools

High Speed Tools						Feed	(ipr)				
Micro-		- -	Cut-O	Cut-Off Tool Width (Inches) Form To					ol Width (Inches)		
Melt® Powder HS Tools	Carbide Tools	Spee((fbm)	1/16	1/8	1/4	1/2	2	1	1-1/2	2	
				Anne	ealed						
M48, T15		72	.001	.0015	.002	.001	15	.001	.0007	.0005	
	C6	216	.003	.005	.007	.00	5	.004	.0035	.0035	
Aged											
M48, T15		36	.001	.001	.0015	.001	15	.001	.0005	.0005	
	C6	132	.003	.003	.0045	.00	3	.002	.002	.002	

Rough Reaming

Micro-Melt® Powder HS Tools		Carbide Tools		Feed (ipr) Reamer Diameter (inches)							
Tool Material	Speed (fpm)	Tool Material	Tool Speed 1/8 1/4 1/ laterial (1pm)		1/2	1	1-1/2	2			
Annealed											
M48, T15	72	C2	190	.003	.005	.008	.011	.015	.018		
Aged											
M48, T15	36	C2	100	.001	.001	.001	.001	.001	.001		

CarTech[®] 15Cr-5Ni Stainless

Drilling

	High Speed Tools									
Tool	Tool Speed Feed (inches per revolution) Nominal Hole Diameter (inches)									
Material	(fpm)	1/16	1/8	1/4	1/2	3/4	1	1-1/2	2	
	Annealed									
M42	50	.001	.002	.004	.007	.008	.010	.012	.015	
Aged										
M42	35	-	.001	.002	.003	.004	.004	.004	.004	

Die Threading

FPM for High Speed Tools								
Tool Material	7 or less, tpi	8 to 15, tpi	16 to 24, tpi	25 and up, tpi				
Annealed								
M2, M7, M10	5-12	8-15	10-22	15-27				
Aged								
T15, M42	4-8	6-10	8-12	10-15				

Milling, End-Peripheral

	Mi	Micro-Melt® Powder High Speed Tools						Carbide Tools					
a (Cu		9	Feed (ipt) Cutter Diameter (in)				lai	По	Feed (ipt) Cutter Diameter (in)				
Depth c (inch Tool Materi	Tool Mater	Speel (fpm)	1/4	1/2	3/4	1-2	Tool Mater	Spee (fbm)	1/4	1/2	3/4	1-2	
					Ar	inealed							
.050	M48 T15	108	.001	.002	.003	.004	C2	275	.001	.002	.004	.006	
Aged													
.050	M48 T15	72	.0005	.001	.002	.003	C2	90	.001	.002	.003	.004	

Tapping			Broaching					
High Sp	eed Tools		Micro-Melt® Powder High Speed Tools					
Tool Material Speed (fpm)			Tool Material	Speed (fpm)	Chip Load (ipt)			
Annealed			Annealed					
M7, M10	12-25		M48, T15	9.6	.002			
Aged			Aged					
M7, M10 Nitrided	5-15		M48, T15	12	.002			

Additional Machinability Notes

When using carbide tools, surface speed feet/minute (sfpm) can be increased between 2 and 3 times over the high speed suggestions. Feeds can be increased between 50 and 100%.

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

Shearing

Bars and forging billets should be cold cut by sawing. Abrasive wheel cutting can cause small surface cracks, particularly when cutting annealed stock and should be avoided.

Weldability

Carpenter 15Cr-5Ni can be satisfactorily welded by the shielded fusion and resistance welding processes. Oxyacetylene welding is not recommended, since carbon pickup in the weld may occur. When a filler metal is required, AWS E/ER630 welding consumables should be considered to provide welds with properties matching those of the base metal. When designing the weld joint, care should be exercised to avoid stress concentrators, such as sharp corners, threads, and partial-penetration welds. When high weld strength is not needed, a standard austenitic stainless filler, such as E/ER308L, should be considered.

Normally, welding in the solution-treated condition has been satisfactory; however, where high welding stresses are anticipated, it may be advantageous to weld in the overaged (H 1150) condition. Usually, preheating is not required to prevent cracking.

If welded in the solution-treated condition, the alloy can be directly aged to the desired strength level after welding. However, the optimum corrosion resistance is obtained by solution treating the welded part before aging. If welded in the overaged condition, the part must be solution treated and then aged.

Other Information

Descaling (Cleaning)

Descaling following forging and annealing can be accomplished by acid cleaning or grit blasting. The acid treatment consists of 2 minutes in 50% by volume muriatic acid at 180°F (82°C), followed by 4 minutes in a mixture of 15% by volume nitric acid, plus 3% by volume hydrofluoric acid at room temperature. Water rinse and desmut in 20% by volume nitric acid at room temperature. Repeat cleaning procedure as necessary but decrease the times by 50% (i.e., 1 and 2 minutes, respectively).

The heat tint from aging can be removed by polishing, vapor blasting or pickling 4 to 6 minutes in a mixture of 15% by volume nitric acid, plus 3% by volume hydrofluoric acid, followed by a water rinse. Repeat the acid cleaning procedure if necessary, but decrease the time by 2 to 3 minutes. Desmut in 20% by volume nitric acid at room temperature.

After acid cleaning, bake 1 to 3 hours at 300/350°F (149/177°C) to remove hydrogen.

Applicable Specifications • AMS 5658 • AMS 5659 • AMS 5862 ASME SA705 • ASTM A693 (Grade XM-12) ASTM A564 (Grade XM-12) ASTM A705 (Grade XM-12) Forms Manufactured · Bar-Rounds Billet Hollow Bar Wire Wire-Rod **Technical Articles** · A Guide to Etching Specialty Alloys for Microstructural Evaluation Alloy Selection for Cold Forming (Part I) Alloy Selection for Cold Forming (Part II)

- Alloy Selection for Cold Forming (Part II)
- How to Passivate Stainless Steel Parts
- New Drop-In Version of 15Cr-5Ni Alloy Offers Superior Machinability, Meets AMS Specs
- New Ph Stainless Combines High Strength, Fracture Toughness and Corrosion Resistance
- New Requirements for Ferrous-Base Aerospace Alloys
- · One of the Word's Most Powerful Revolvers Gets Lift From Aerospace Alloys
- Steels for Strength and Machinability
- · Passivating and Electropolishing Stainless Steel Parts
- · Selection of High Strength Stainless Steels for Aerospace, Military and Other Critical Applications

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 3/15/04