

6M0-N

Associated specifications: ASTM A479, ASTM B691, UNS N08367 Plate, sheet, and strip: ASTM 240, ASTM B688

Type analysis

Single figures are nominal except where noted.

Iron	Balance	Nickel	23.5-25.5 %	Chromium	20.0-22.0 %
Molybdenum	6.0-7.0 %	Manganese	Max 2.00 %	Silicon	Max 1.00 %
Copper	Max 0.75 %	Nitrogen	0.18-0.25 %	Phosphorus	Max 0.040 %
Carbon	Max 0.030 %	Sulfur	Max 0.030 %		

 $PREn = (\%Cr + 3.3\%Mo + 16\%N) \ge 40.0$

Forms manufactured

Description

6Mo-N is a superaustenitic stainless steel to resist pitting and crevice corrosion in acidic or neutral chloride environments. 6Mo-N contains at least 6% molybdenum and has a pitting resistance equivalent number (PREn) of at least 40. The resistance is provided by chromium, molybdenum, and nitrogen. 6Mo-N has better resistance to chloride stress corrosion cracking than 300-series stainless steel, and has suitability for sour gas applications (NACE MR0175/ISO 15156). 6Mo-N has yield strength 50% greater than 300-series austenitic stainless steel, plus good workability and weldability.

Key Properties:

- · Pit and crevice corrosion resistance
- Yield/tensile properties
- Stress corrosion resistance

Markets:

Energy

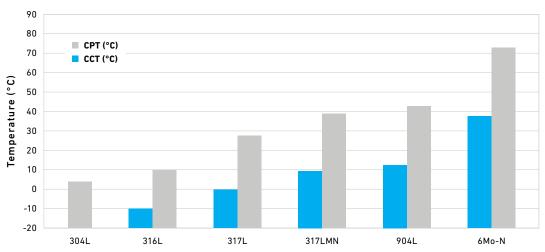
Industrial

Applications:

- Offshore oil and gas
- Food processing
- · Chemical processing
- Power generation

Corrosion resistance

6Mo-N may be considered for applications in mild/moderate sulfuric and phosphoric acid applications and especially in acidic environments containing chloride impurities. The combination of chromium, molybdenum, nitrogen, and nickel are intended to provide resistance to pitting and crevice attack with resistance to stress corrosion cracking in many environments.


IMPORTANT NOTE:

The following 4-level rating scale (Excellent, Good, Moderate, Restricted) is intended for comparative purposes only and is derived from experiences with wrought product. Additive manufactured material may perform differently; corrosion testing is recommended. Factors that affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish, and dissimilar metal contact.

Nitric Acid	Good	Sulfuric Acid	Moderate
Phosphoric Acid	Good	Acetic Acid	Good
Sodium Hydroxide	Good	Salt Spray (NaCl)	Excellent
Sea Water	Excellent	Sour Oil/Gas	Good
Humidity	Excellent		

CRITICAL PITTING TEMPERATURE (CPT) VS. CRITICAL CREVICE TEMPERATURE (CCT)

Measured by ASTM G48 in 10% ferric chloride.

Source: Practical Guidelines for the Fabrication of Duplex Stainless Steels, International Molybdenum Association, 2001.

Physical properties

PROPERTY
DENSITY
MEAN SPECIFIC HEAT
MEAN COEFFICIENT OF THERMAL EXPANSION
THERMAL CONDUCTIVITY
MODULUS OF ELASTICITY (E)
ELECTRICAL RESISTIVITY

At or From
Room temperature
Room temperature
68 to 212°F (20 to 100°C)
From 68 to 212°F
Room temperature
68°F (20°C)

English Units
0.291 lb/in ³
0.11 Btu/lb/°F
8.5 x 10 ⁻⁶ length/length/°F
6.8 Btu-in/hr/ft²/°F
28300 ksi
535 ohm-cir-mil/ft

Metric Units
$8.06 \mathrm{kg/m^3}$
500 J/kg·K
15.3×10^{-6} length/length/°C
11.8 W/m·K
195000 MPa
0.89 microohm·cm

Typical mechanical properties

PROCESS / CONDITION:										
FORM, GAUGE, HEAT TREATMENT OR TEMP	ORIENTATION	0.2% YIELD Strength		ULTIMATE TENSILE STRENGTH		ELONGATION IN 4D	REDUCTION OF AREA	HARDNESS		
		ksi	MPa	ksi	MPa	%	%			
Annealed condition	Z	48	331	103	710	57	83	176 HB		
Strain harden condition	Z	119	820	136	938	28	78	30 HRC		
	Z	119	820	136	938	28	78	30 HR		

_	001	t tr/	へきゅ	nent
п				пени

Heat treatment

6Mo-N cannot be hardened by heat treatment. Solution annealing is required to be carried out at temperature of 2025°F (1105°C) minimum with soak time appropriate to the size of the bars and followed by water quenching. 6Mo-N should never be heated above 2350°F (1290°C) to avoid the risk of incipient melting. Annealing below 2025°F (1105°C) can cause the formation of deleterious phases/carbides, which can reduce corrosion resistance. Excessive time at the annealing temperature can cause increased oxidation.

Workability

Cold working

 $6 Mo-N \ cold \ works \ well \ with a \ work \ hardening \ rate similar \ to \ or \ somewhat \ greater \ than \ that \ of \ Type \ 316 \ stainless \ steel.$

Hot working

Hot working is generally conducted between 1830°F and 2300°F (1000°C and 1260°C). Annealing is suggested after hot working.

Weldability

6Mo-N can be welded using gas-metal-arc (GMAW), gas-tungsten-arc (GTAW) or other conventional welding techniques. For best corrosion resistance, an over-matched filler metal, such as 9% molybdenum Pyromet* 625 is suggested.

Typical feeds and speeds

The feeds and speeds in the following charts are conservative recommendations for initial setup. Higher feeds and speeds may be attainable depending on machining environment.

TURNING — SINGLE-POINT AND BOX TOOLS									
DEPTH OF CUT. IN	HIGH-SPEED	TOOLS		CARBIDE TO	CARBIDE TOOLS				
	SPEED,	FEED,	FEED, TOOL			FEED,	TOOL		
	FPM	IPR	MATERIAL	BRAZED	THROW AWAY	IPR	MATERIAL		
.150	66	.015	M-48, T-15	250	300	.015	C-6		
.025	84	.007	M-48, T-15	300	350	.007	C-7		

TURNING — CUT-OFF AND FORM TOOLS									
SPEED, FPM	FEED, IPF	FEED, IPR						TOOL MATERIAL	
	CUT-OFF	CUT-OFF TOOL WIDTH, IN			OL WIDTH, IN	HIGH-SPEED	CARBIDE		
	1/16	1/8	1/4	1/2	1	1-1/2	2	TOOLS	TOOLS
48	.001	.001	.0015	.0015	.001	.0007	.0007	M-48, T-15	
168	.004	.0055	.0045	.004	.003	.002	.002		C-6

ROUGH REAMING										
HIGH-SPEED TOOLS CARBIDE TOOLS			FEED, IPR, REAMER DIAMETER, IN`							
SPEED, FPM	TOOL MATERIAL	SPEED, FPM	TOOL MATERIAL	1/8	1/4	1/2	1	1-1/2	2	
72	M-48, T-15	80	C-2	.003	.005	.008	.012	.015	.018	

DRILLING — HIGH-SPEED TOOLS									
SPEED, FPM	FEED, IPR								
	NOMINAL	TOOL MATERIAL							
	1/16	1/8	1/4	1/2	3/4	1	1-1/2	2	MATERIAL
45-50	.001	.002	.004	.007	.010	.012	.015	.018	M-42
150	.0005	.002	.004	.006	.0077	.0088	.0098	.0098	C-2 Coated

TAPPING — HIGH-SPEED TOOLS						
SPEED, FPM	TOOL MATERIAL					
12–25	M-7, M-10					

DIE THREADING — HIGH-SPEED TOOLS								
SPEED, FPM				TOOL MATERIAL				
7 OR LESS, TPI	8 TO 15, TPI	16 TO 24, TPI	25 AND UP, TPI	TOOL MATERIAL				
4-8	6–10	8–12	10-15	T-15, M-42				

MILLING — END PERIPHERAL													
	HIGH-SPEED TOOLS							TOOLS					
DEDTH OF CUT IN	SPEED, FPM	FEED, I	N PER TO	ОТН				FEED, IPT					
DEPTH OF CUT, IN		CUTTER DIAMETER, IN			TOOL MATERIAL	SPEED, FPM	CUTTER DIAMETER, IN PER TOOTH				TOOL MATERIAL		
		1/4	1/2	3/4	1-2	MATERIAL		1/4	1/2	3/4	1-2	MATERIAL	
.050	78	.001	.002	.003	.004	M-8, T-15	254	.001	.002	.003	.005	C-2	

BROACHING—HIGH-SPEED TOOLS						
SPEED, FPM	CHIP LOAD, IPT	TOOL MATERIAL				
12	.0030	M-48, T-15				

For additional information, please contact your nearest sales office:

info@cartech.com | 610 208 2000

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make their own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings LLC, a subsidiary of Carpenter Technology Corporation.