

HIGH PERMEABILITY 49®

UNS Number: K94840

Type analysis

Single figures are nominal except where noted.

Iron	Balance	Nickel	48.00 %	Manganese	0.50 %
Silicon	0.35 %	Carbon	0.02 %		

Forms manufactured

Bar-Rounds	Billet	Sheet	Strip	Wire	Wire-Shapes

Description

High Permeability 49 is a 48% nickel-iron alloy that possesses the highest saturation flux density of any nickel-iron alloy. The saturation flux density of about 16000 gauss (1.6 Tesla) combined with high magnetic permeability and low core loss makes this a versatile alloy with many potential applications.

High Permeability 49 has been used in laminated cores for instrument transformers, magnetic shields and cores for certain electronic and communications devices in which extremely high permeability at low magnetizing forces greatly increases the efficiency and effectiveness of the equipment.

Because of its high permeability, it has also been used in solenoid cores and sensitive relays that must respond to low magnetizing forces.

Key Properties:

- High saturation flux density
- High magnetic permeability
- Low core loss

Markets:

- Aerospace
- Consumer
- Automotive
 Industrial

Applications:

- Instrument transformers
- Magnetic shields and cores
- · Sensitive relay and solenoid components

Available grades

High Permeability 49	Available in bar, wire, rod, and strip form in thicknesses of 0.020 in. (0.51 mm) and over by various widths, this grade has been used for magnetic shielding and sensitive relay and solenoid components.
High Permeability 49, rotor grade	This grade is specially processed to yield uniform, isotropic properties and is supplied as cold rolled strip in thicknesses from 0.004 to 0.020 in. (0.1 to 0.51 mm). It has been used for laminations for rotating components such as resolvers and servo-synchros where the magnetic properties must be highly isotropic (i.e., not directionally dependent).
High Permeability 49, transformer grade	This semi-isotropic grade is specially processed to produce higher magnetic permeabilities parallel to the rolling direction of the strip and is suitable for use in transformer laminations and tape wound cores where the directionality of magnetic properties can be an advantage. It is available as cold rolled strip in thicknesses ranging from 0.001 to 0.020 in. (0.03 to 0.51 mm).

Corrosion resistance

High Permeability 49 resists weather and moisture corrosion to a moderate extent.

IMPORTANT NOTE:

The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors that affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish, and dissimilar metal contact.

Humidity

Good

DATASHEET

Physical properties

PROPERTY	At or From	English Units	Metric Units
SPECIFIC GRAVITY	-	8.18	8.18
DENSITY	—	0.2950 lb/in ³	8165.57 kg/m ³
MEAN SPECIFIC HEAT	_	0.1200 Btu/lb/°F	502.41J/kg·K
MEAN COEFFICIENT OF THERMAL EXPANSION	77 to 399°F	4.61 x 10⁻⁰ length/length/°F	8.3 length/length/°C
THERMAL CONDUCTIVITY	_	90.20 Btu-in/hr/ft ² /°F	13 W/m·K
ELASTIC MODULUS			
AFTER PROCESS ANNEAL, IN TENSION, BAR	871°C	22.0 x 10 ³ ksi	—
AFTER PROCESS ANNEAL, IN TORSION, BAR	871°C	7.60 x 10 ³ ksi	_
COLD DRAWN, IN TORSION, BAR	_	7.80 x 10 ³ ksi	—
COLD DRAWN, IN TENSION, BAR	_	24.0 x 10 ³ ksi	_
COLD DRAWN, IN TENSION, STRIP	_	24.0 x 10 ³ ksi	_
FORMING AND DEEP DRAW QUALITY, IN TENSION, STRIP	_	24.0 x 10 ³ ksi	_
HYDROGEN ANNEALED, IN TENSION, BAR	1177°C	22.5 x 10 ³ ksi	—
HYDROGEN ANNEALED, IN TORSION, BAR	1177°C	7.50 x 10 ³ ksi	_
ELECTRICAL RESISTIVITY	70°F (21°C)	290.0 ohm-cir-mil/ft	48 microohm∙cm
TEMPERATURE COEFF. OF ELECTRICAL RESIST.	0 to 930°F	20.0 x 10 ⁻⁴ ohm/ohm/°F	_
CURIE TEMPERATURE	_	860 to 930°F	460 to 499°C
MELTING RANGE	_	2600°F	1427°C

Magnetic properties

DC NORMAL INDUCTION FROM RING SPECIMEN

0.060 in (1.52 mm) thick in the typical mill process annealed condition and dry hydrogen annealed at 1450°F (788°C), 1600°F (871°C), and 1750°F (954°C) for 2 hours and at 2050°F (1121°C) for 4 hours.

Magnetizing Force (H) Oersteds

DIRECT CURRENT (DC) MAGNETIC PROPERTIES

ASTM A-596			ASTM A-596						
PROPERTIES	BAR	STRIP							
PROPERTIES	DAR	0.014 IN (.036 MM)	0.025 - 0.125 IN (0.64 - 3.18 MM)						
Initial permeability B_{100}	6,500	12,000	8,000						
Maximum permeability	75,000	150,000	90,000						
Remanent flux (Br), Gauss	9,000	9,000	9,000						
Coercive force (Hc) ¹ , Oersted	0.04/0.07	0.05/0.06	0.04/0.07						
Saturation inductance (G) ²	15,000	15,000	15,000						

¹ From 10,000 gausses

² From H-100 oersteds

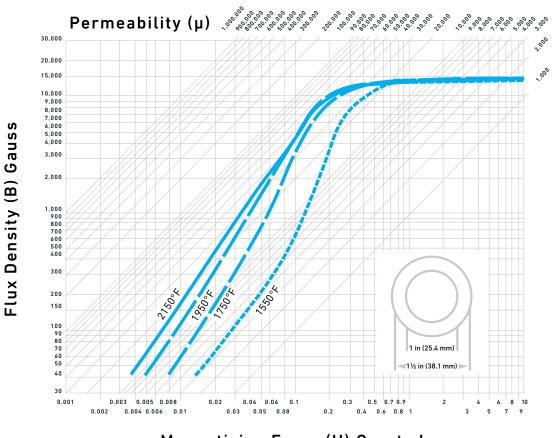
MINIMUM ALTERNATING CURRENT (AC) PERMEABILITY REQUIREMENTS, ROTOR AND TRANSFORMER GRADE

These minimum permeability requirements are based on evaluating the properties via a ring specimen 1.5 in (38.1 mm) OD x 1 in (25.4 mm) ID hydrogen annealed at 2150°F (1177°C) 4 hours, furnace cooled at a rate of 150/220°F (83/122°C) per hour through the Curie point.

0.014 IN (0.36 MM) AND 0.006 IN (0.15 MM)									
GRADE	THICKNESS	5	MINIMUM 6	MINIMUM 60 Hz AC PERMEABILITY					
	IN	мм	B40	B200	B2000	B4000	B8000		
Rotor	0.014	0.36	8,000	14,000	30,000	43,000	46,000		
Transformer	0.014	0.36	12,000	19,000	36,000	45,000	50,000		
Rotor	0.006	0.15	10,000	17,000	40,000	55,000	70,000		
Transformer	0.006	0.15	13,000	24,000	50,000	60,000	65,000		

REMANENT FLUX AND COERCIVE FORCE

0.060 IN (1.52 MM) THICK RINGS FROM A FLUX DENSITY OF 13,000 GAUSSES						
TREATMENT	REMANENT FLUX (Br), GAUSS	COERCIVE FORCE (Hc), OERSTED				
Typical mill process annealed	6300	0.85				
1450°F (788°C), 2 hr, dry H ₂	9900	0.48				
1600°F (871°C), 2 hr, dry H ₂	10200	0.32				
1750°F (954°C), 2 hr, dry H ₂	10300	0.18				
2050°F (1121°C), 2 hr, dry H_2	10900	0.05				

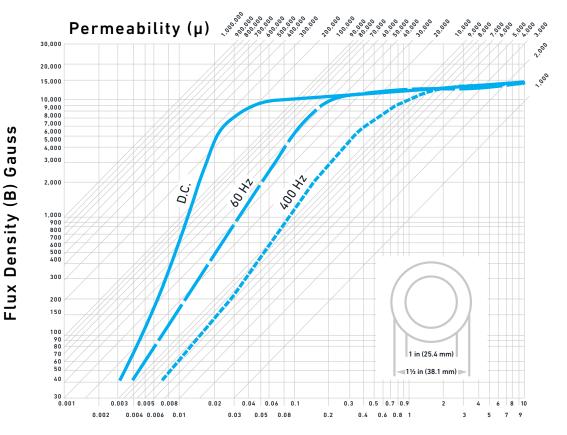


DATASHEET

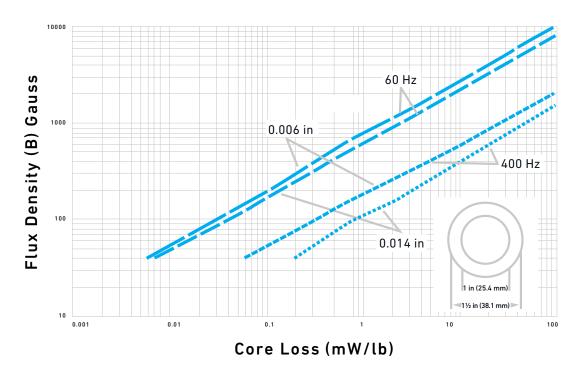
> HIGH PERMEABILITY 49

ROTOR GRADE AT 60 Hz

From stamped ring specimen 0.014 in (0.36 mm) thick, dry hydrogen annealed at 1550°F (843°C), 1750°F (954°C), 1950°F (1066°C), and 2150°F (1177°C), 4 hours.



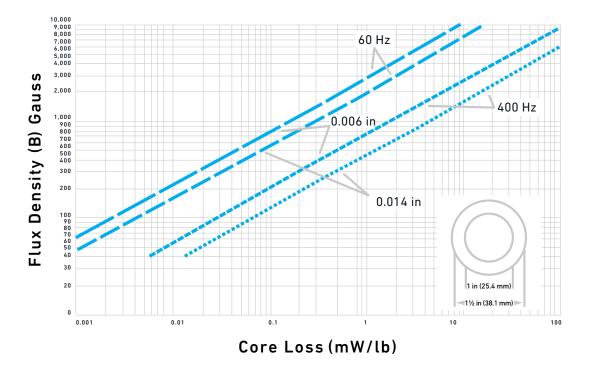
Magnetizing Force (H) Oersteds


ROTOR GRADE AT 0.014 IN (0.36 MM) THICK

Magnetizing Force (H) Oersteds

ROTOR GRADE

DATASHEET

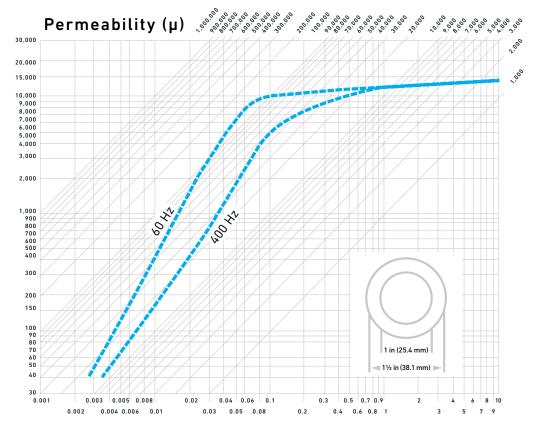

DATASHEET

> HIGH PERMEABILITY 49

SPECIFIC CORE LOSS CURVES

At 60 Hz and 400 Hz from stamped ring specimen 1 in (25.4 mm) ID x 1.5 in (38.1 mm) 0D, dry hydrogen annealed at 2150°F (1177°C), 4 hours.

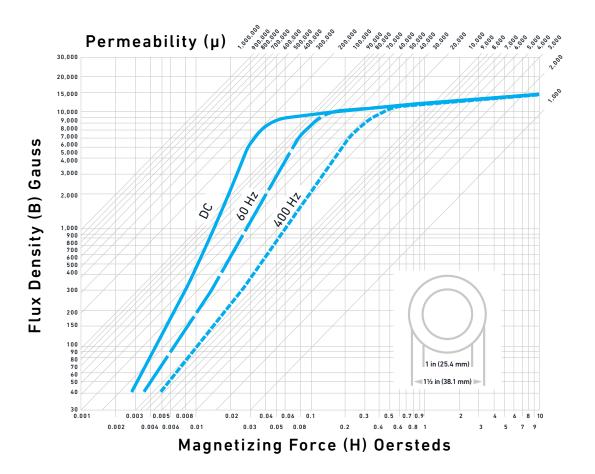
TRANSFORMER GRADE


DATASHEET

> HIGH PERMEABILITY 49

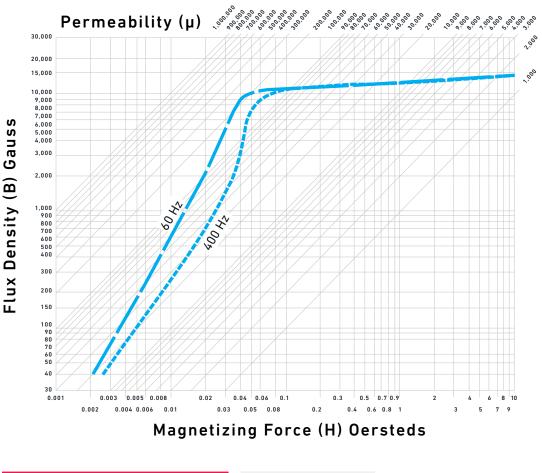
Flux Density (B) Gauss

TRANSFORMER GRADE AT 0.014 IN (0.36 MM) THICK



Magnetizing Force (H) Oersteds

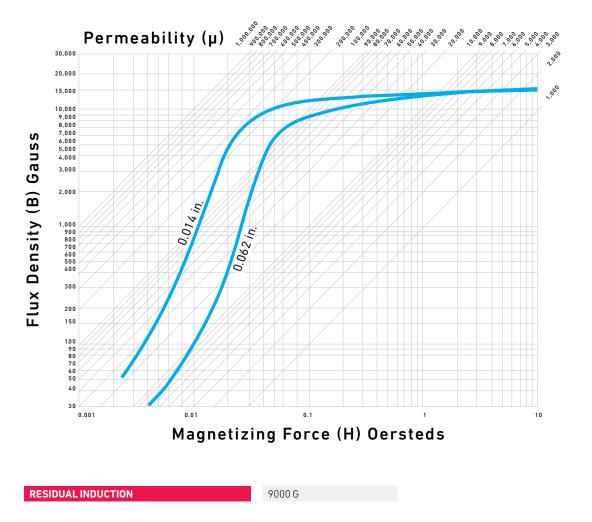
TYPICAL MAGNETIZATION CURVES ROTOR GRADE AT 0.007 IN (0.18 MM) THICK


DC, 60 Hz and 400 Hz from stamped ring specimen at indicated thickness, dry hydrogen annealed at 2150 °F (1177 °C), 4 hours.

TYPICAL MAGNETIZATION CURVES TRANSFORMER GRADE AT 0.006 IN (0.15 MM) THICK

60 Hz and 400 Hz sine flux excitation 1-DU laminations at indicated thickness, dry hydrogen annealed at 2150°F (1177°C), 4 hours.

SATURATION FLUX DENSITY (Bs)	15000 G
COERCIVITY (Hc)	0.0400 Oe
MAXIMUM PERMEABILITY	75000


TEMPERATURE VARIATION OF PERMEABILITY

Expressed in % of value of 77°F (25°C).

AC AND DC MAGNETIC PROPERTIES OF LAMINATION STRIP 0.006 IN (0.15 MM) AND 0.014 IN (0.36 MM) THICK						
TEMPERATURE	PERMEABILITY AT 1000 GAUSSES	MAXIMUM PERMEABILITY				
-94°F (-70°C)	75/90	90/95				
212°F (100°C)	120/130	100/105				

TYPICAL DC PERMEABILITY RANGE

0.014 in (0.36 mm) to 0.062 in (1.57 mm) thick, hydrogen annealed at 2150°F (1177°C).

Typical mechanical properties

BAR								
HEAT TREATMENT	YIELD STREN	YIELD Strength		ULTIMATE TENSILE STRENGTH		RTIONAL	ELONGATION	REDUCTION OF AREA
	ksi	MPa	ksi	MPa	ksi	MPa	%	%
Cold drawn	80	552	95	655	35	241	25	62
Hydrogen annealed 2150°F (1177°C)	22	152	70	483	12	83	45	68
After process anneal 1600°F (871°C)	23	154	75	517	13	90	43	65

BAR ELASTICITY AND IMPACT

HEAT TREATMENT	ELASTIC MO	DULUS			.	HARDNESS	
	IN TENSION	IN TENSION		IN TORSION		– IZOD IMPACT	
	psix 10 ⁴	MPa x 10 ³	psix 10 ⁴	MPa x 10 ³	FT-LBS	J	HRB
Cold drawn	24.0	166	7.8	54	93/99	126/134	98
Hydrogen annealed 2150°F (1177°C)	22.5	155	7.5	52	93/98	126/133	62
After process annealed 1600°F (871°C)	22.0	152	7.6	52	95	129	75

EFFECT OF HEAT TREATING TEMPERATURE ON TYPICAL MECHANICAL PROPERTIES ¹							
TEMPERATURE	YIELD STR	YIELD STRENGTH 2% OFFSET		TRENGTH	ELONGATION IN 2 IN (50.8 MM)		
TEMPERATURE	ksi	MPa	ksi	MPa	%		
1450°F (788°C)	37	255	79	545	30		
1600°F (871°C)	34	234	75	517	31		
750°F (954°C)	27	186	71	490	32		

³ Strip 0.060 in (1.52 mm) thick heat treated for 2 hours at indicated temperature.

STRIP						
HEAT TREATMENT	TENSILE	STRENGTH	ELASTIC M (IN TENSIO		ELONGATION	HARDNESS
IREATMENT	ksi	MPa	psi x 104	MPa x 10 ³	%	ROCKWELL HRB
Cold rolled	130	896	24.0	166	5	100
Forming and deep draw quality	80	552	24.0	166	32	68

Heat treatment

Annealing	Standard hydrogen anneal For maximum softness and optimum magnetic and electrical properties. High Permeability 49 should be annealed in an oxygen-free, dry hydrogen atmosphere with a dew point below -40°F (-40°C) for 2 to 4 hours at 2150°F (1177°C), followed by a furnace cool at a rate of 100/200°F (55/110°C) per hour down to 800°F (427°C) and at any rate thereafter. Oil, grease, lacquer, and any other contaminants must be removed before annealing. During hydrogen annealing, the individual parts should be separated by a surface insulation media or an inert insulating powder, such as magnesium or aluminum oxide.
Stress relieving	To relieve all strains and restore the alloy to a soft condition suitable for drawing, spinning, forming, bending, and similar operations, anneal for not more than 1 hour at 1450/1600°F (788/871°C). Since high-nickel, high permeability alloys readily absorb carbon, sulfur, oxygen, and other contaminants from combustion furnace gasses, in-process annealing should be done in a hydrogen or inert gas atmosphere.

Workability

Forging	The recommended forging temperature is 2150°F (1177°C).
Cold working	For best blanking characteristics, strip should be ordered in the cold rolled condition at Rockwell B 90 minimum. For best forming characteristics, strip should be ordered as cooled rolled and annealed for forming. Best drawing characteristics are obtained when ordered as annealed, deep drawing quality.

Machinability

Machining	If components are to be machined in volume from bar stock, High Permeability 49-FM, a free-machining grade, is recommended.
Work hardening	The standard grade, High Permeability 49 alloy, machines somewhat like the austenitic stainless alloys. It develops gummy chips but does not work harden as rapidly as the stainless alloys.
Final magnetic properties	Sulfur-bearing cutting compounds are highly detrimental to the final magnetic properties. Animal lard oil should be used in drilling and machining operations, which must be performed at slow speeds.
Best machining characteristics	Work hardened bars offer the best machining characteristics. Parts should be degreased and cleaned as soon as possible.

Typical feeds and speeds

TURNING — SINGLE-POINT AND BOX TOOLS											
DEPTH OF CUT, IN	HIGH-SPEED	TOOLS		CARBIDE TOOLS (INSERTS)							
	SPEED,	FEED,	TOOL	SPEED, FPM		FEED,	TOOL				
	FPM	IPR	MATERIAL	UNCOATED	COATED	IPR	MATERIAL				
.150	30	.010	M-41, M-42,	120	—	.010	C-2				
.025	40	.005	M-47	130	—	.005	C-3				

TURNING - CUT-	OFF AND FORI	M TOOLS							
	FEED, IPR	1	TOOL MATERIA	L					
SPEED, FPM	CUT-OFF	CUT-OFF TOOL WIDTH, IN				TH, IN		HIGH-SPEED	CARBIDE TOOLS
	1/16	1/8	1/4	1/2	1	1-1/2	2	TOOLS	CARDIDE TOULS
25	.001	.001	.0015	.0015	.001	.0007	.0007	M-42	—
80	.003	.003	.0045	.003	.002	.002	.002		C-2

ROUGH REAMING											
HIGH-SPEED T	OOLS	CARBIDE TOOL	S	FEED, IPR, R	EAMER DIAME	TER, IN					
SPEED, FPM	TOOL MATERIAL	SPEED, FPM TOOL MATERIAL		1/8	1/4	1/2	1	1-1/2	2		
30-60	M-42	70	C-2	.002	.006	.008	.010	.012	.014		

DRILLING									
	FEED, IPF								
SPEED, FPM	NOMINAL	TOOL MATERIAL							
	1/16	1/8	1/4	1/2	3/4	1	1-1/2	2	
40	.001	.002	.004	.007	.008	.010	.012	.015	M-42

TAPPING — HIGH-SPEED TOOLS	
SPEED, FPM	TOOL MATERIAL
6–15	M-1, M-7, M-10

BROACHING — HIGH-SPEED TOOLS		
SPEED, FPM	CHIP LOAD, IN PER TOOTH	TOOL MATERIAL
8–12	.002	M-42

DIE THREADING	DIE THREADING — HIGH-SPEED TOOLS											
SPEED, FPM												
7 OR LESS, TPI	8 TO 15, TPI	16 TO 24, TPI	25 AND UP, TPI	TOOL MATERIAL								
8–20	10–25	15–30	20-35	M-1, M-2, M-7, M-10								

MILLING - END	MILLING — END PERIPHERAL												
HIGH-SPEED TOOLS								CARBIDE TOOLS					
DEPTH		FEED, IN	PER TOO	тн				FEED, IN PER TOOTH					
OF CUT, IN	SPEED, FPM	CUTTER DIAMETER, IN			TOOL MATERIAL	SPEED, FPM	CUTTER DIAMETER IN				TOOL MATERIAL		
		1/4	1/2	3/4	1-2	MAIERIAL	TEM	1/4	1/2	3/4	1-2		
.050	35	.0005	.001	.002	.003	M-42	200	.001	.002	.003	.004	C-6	

Other information

Additional machinability notes	When using carbide tools, surface speed feet/minute (sfm) can be increased between 2 to 3 times over the high-speed tool suggestions. Feeds can be increased between 50 and 100%. Figures used for all metal removal operations reported are average. On certain work, the nature of the part may require adjustment of the speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.
Weldability	High Permeability 49 is readily brazed, welded, and soft or hard soldered by employing the usual practices used on ferrous alloys.
Applicable specifications	ASTM A753 Alloy 2 IEC 404-8-6 (Alloy class E3) MIL-N-14411B (MR) (Composition 3 and 4)

For additional information, please contact your nearest sales office: electrification@cartech.com | 610 208 2000

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make their own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings LLC, a subsidiary of Carpenter Technology Corporation.