

GUIDE TO MACHINING CARPENTER SPECIALTY ALLOYS

Carpenter Technology Corporation

Wyomissing, Pennsylvania 19610 U.S.A.

Copyright 2002 CRS Holdings, Inc. All Rights Reserved. Printed in U.S.A. 9-02/7.5M

ISO 9000 and QS-9000 Registered Headquarters - Reading, PA

The information and data presented herein are suggested starting point values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available. Unless otherwise noted, all registered trademarks are property of CRS Holdings, Inc., a subsidiary of Carpenter Technology Corporation.

Contents

Introduction	1
General Stainless Material and Machining Characteristic	s 3
Classification of Stainless Steels	5
Basic Families and Designations	5
Austenitic Alloys	5
Ferritic Alloys	7
Martensitic Alloys	7
Duplex Alloys	8
Precipitation-Hardenable Alloys	8
Free-Machining Alloys	9
Project 70+® Stainless Enhanced-Machining Alloys	12
Machinability of Stainless Steels	15
Definitions of Machinability	15
General Machining Properties	16
Austenitic Alloys	16
Ferritic and Martensitic Alloys	18
Duplex Alloys	19
Precipitation-Hardenable Alloys	20
Relative Machinability of Stainless Steels	
and Other Alloys	22
The Carpenter Selectaloy® Method	
Criteria for Selecting	23
Selecting for Corrosion Resistance	26
Selecting for Mechanical Strength	26
Enhanced Selectaloy® Diagram	27
Nitrogen Strengthened Grades	27
Other Grades to Consider	29

Traditional Machining	Operations	31
General Considera	ations and Guidelines	31
Turning Speeds & Feed	ds—Turning can be found on pages 37 t	o 40
Turning Paramete	rs	35
	ng Tools	
•		
Trouble-Shooting	Check Chart	43
Drilling Speeds & Feed	ls—Drilling can be found on pages 48 ar	nd 49
General Guideline	S	45
Drilling Parameter	·s	46
•		
Small-Diameter D	rills	47
Special Drills		49
Trouble-Shooting	Check Chart	51
Tapping Speeds & Fee	ds—Tapping can be found on pages 57	and 58
Types of Holes an	d Taps	55
Percent of Thread	l	58
Grinding of Taps		60
Trouble-Shooting	Check Chart	61
Threading Speeds & F	eeds—Threading can be found on page	e 65 to 66
J		
	and Geometries	
9	ameters and Cutting Fluid	
	l	
•		
Trouble-Shooting	Check Chart	68

Milling	g Speeds & Feeds - Milling can be found on pages 71 and 72	
	Types of Milling Cutters	69
	Grinding of Milling Cutters	70
	Milling Parameters and Cutting Fluid	73
	Trouble-Shooting Check Chart	74
Broach	hing Speeds & Feeds - Broaching can be found on pages 79	and 80
	General Guidelines	77
	Broach Design and Grinding	77
	Trouble-Shooting Check Chart	81
Reami	ing Speeds & Feeds - Reaming can be found on pages 85 and	d 86
	General Guidelines	83
•	Types of Reamers	83
	Grinding and Care of Reamers	84
	Reaming Parameters	87
	Alignment	87
	Trouble-Shooting Check Chart	88
Sawin	g Speeds & Feeds - Sawing can be found on page 90	
	General Guidelines	89
	Sawing Parameters	89
Grindi	ing	
,	Wheels	91
	Grinding Parameters	91

Alloys can be found on pages 93 to 112 These include: Carpenter Tool Steels Carpenter High Temperature Alloys Nickel-Base and Cobalt-Base Carpenter Electronic Alloys Cutting Fluids Stainless Steel Cutting Oils Emulsifiable Fluids General Practices Cleaning and Passivating Passivating Passivating

Nontraditional Machining Operations...... pages 123 to 136

Citric Acid Passivation

Abrasive Jet Machining
Abrasive Water Jet Machining

Electrochemical Machining
Electrochemical Grinding
Electrical Discharge Machining
Electron Beam Machining
Laser Beam Machining
Plasma Arc Machining
Chemical Machining

•

Other Specialty Metals ... Speeds & Feeds—Other Carpenter Specialty

Hel	pful	Tables		pages	137	to	167
-----	------	---------------	--	-------	-----	----	-----

- Automatic Machining Efficiency Index Table
- Machine Hours Per 1,000 Pieces
- Approximate Stock Required to Make 1,000 Pieces
- Weights of Steel Bars Per Lineal Foot
- Decimal Sizes of Drills & Length of Drill Points
- Drills for Tapped Holes
- Table of Cutting Speeds
- Fractions, Decimal & Metric Equivalents
- Hardness Conversion Table
- Wire Gauges
- Formulas

Introduction

Carpenter Technology Corporation ("Carpenter") is a materials company making specialty alloys and engineered parts for dozens of industries with hundreds of applications. Specialty Alloys Operations, our specialty steel and alloy manufacturer and distributor, comprises the core business. Dynamet Incorporated, a Carpenter company, produces bar and coil products from titanium and other alloys. Carpenter Powder Products makes and sells tool and high speed steels and specialty alloy powder products. The Engineered Products Group is a consortium of companies that makes precision drawn products, complex ceramic parts, thinwall tubing and other engineered materials.

Since 1928, when Carpenter introduced the world's first freemachining stainless steel, we have been concentrating on the business of making stainless and other specialty alloys more useful and more profitable to industry.

Our record of accomplishment in this endeavor has been gratifying. Through never-ending research, exacting quality controls and rigid production techniques, we have led the field in the introduction of new and improved specialty alloys and services to help industry improve product quality and reduce fabricating costs.

The Carpenter list of "firsts" is impressive. It includes the first free-machining stainless, Type 416 . . . the first free-machining chrome-nickel stainless, Type 303 . . . the first free-machining Invar, Free-Cut Invar "36" alloy . . . and this evidence of leadership continues with the widespread acceptance of the Project 70° stainless and Project 7000° stainless grades and now Project $70+^{\circ}$ stainless.

Through these constant efforts to improve specialty alloy quality, we have built every known production and performance advantage into every machining bar we produce. But no specialty steel can be so good that it will perform satisfactorily in the shop when it s mishandled or misunderstood.

The purpose of this book is to help you, the fabricator, get every benefit out of the Carpenter specialty alloys you machine. The machining tables are intended to provide you with suggested starting feeds and speeds. Machine setup, tooling and other factors beyond Carpenter's control will affect actual performance. A section on machining Carpenter tool steels, high temperature alloys, and electronic alloys is also included. These are tabbed together under "Other Specialty Metals."

If the answer to your particular machining problem cannot be found here, we hope you will call us at 1-800-654-6543 for help. Or, refer to our online technical information database at www.cartech.com. Registration is free.

General Stainless Material and Machining Characteristics

Stainless steels do not constitute a single, well-defined material; but, instead, consist of several families of alloys, each generally having its own characteristic microstructure, type of alloying and range of properties. To complicate the matter, further compositional differences within each family produce an often bewildering variety of alloys suited to a wide range of applications. The common thread among the alloys is the presence of a minimum of about 11 percent chromium to provide the excellent corrosion and oxidation resistance which is the chief characteristic of the materials.

Because of the wide variety of stainless steels available, a simple characterization of their machinability can be somewhat misleading. As shown in later sections of this booklet, the machinability of stainless steels varies from low to very high, depending on the final choice of alloy. In general, however, stainless steels are considered more difficult to machine than certain other materials, such as aluminum or low-carbon steels. Stainless steels have been characterized as "gummy" during cutting, showing a tendency to produce long, stringy chips, which seize or form a built-up edge (BUE) on the tool. Machine operators may cite reduced tool life and degraded surface finish as consequences. These broad observations are due to the following properties, which are possessed by stainless steels to different extents:

- 1. high tensile strength
- 2. large spread between yield strength and ultimate tensile strength
- 3. high ductility and toughness
- 4. high work-hardening rate
- 5. low thermal conductivity

Despite these properties, stainless steels are machinable, as long as it is recognized that they behave differently from other materials, and, consequently, must be machined using different techniques.

In general, more power is required to machine stainless steels than carbon steels; cutting speeds must often be lower; a positive feed must be maintained; tooling and fixtures must be rigid; chip breakers or curlers may be needed on the tools; and care must be taken to ensure good lubrication and cooling during cutting.

Classification of Stainless Steels

Basic Families and Designations

Stainless steels can be divided into five families. Four are based on the characteristic microstructure of the alloys in the family: austenitic, ferritic, martensitic or duplex (austenitic plus ferritic). The fifth family, the precipitation-hardenable alloys, is based on the type of heat treatment used, rather than microstructure.

In addition, stainless steels may be divided into the non-free-machining alloys and the free-machining alloys. Free-machining alloys form a limited group that cuts across the basic families. Finally, both non-free-machining and free-machining alloys may be available in the Project 70+® stainless version having enhanced-machining properties compared to the standard alloys.

Because of the variety of stainless steels, it is usually possible to obtain an alloy possessing the desired set of attributes, unless they are mutually exclusive. This same wealth of alloys can create problems during the selection process, simply because of the number of alloys that must be considered and evaluated for their suitability. An invaluable aid in this process is Carpenter's Selectaloy® method, described later in this booklet. The following sections describe the basic characteristics which may be important during the selection process for a particular stainless steel.

Austenitic Alloys

Austenitic stainless steels have a face-centered cubic structure and are nonmagnetic in the annealed condition. The alloys can be subdivided into two categories: the standard alloys, such as Type 304, containing nickel to provide the austenitic structure; and those containing instead a substantial quantity of manganese, usually with higher levels of nitrogen and in many cases nickel. Examples of the latter are 22Cr-13Ni-5Mn, 21Cr-6Ni-9Mn and 15-15LC® stainless. Nitrogen may also be used to provide strengthening in the chromium-nickel grades, as in Type 304HN. The standard chromium-nickel alloys with lower nitrogen levels have tensile yield strengths of 30-40 ksi (205-275 MPa) in the annealed condition, while alloys containing higher nitrogen have yield strengths up to about 70 ksi (480 MPa).

Austenitic stainless steels possess good ductility and toughness, even at cryogenic temperatures, and can be hardened substantially by cold working. The degree of work hardening depends on alloy content. Austenitic stainless steels with a lower alloy content may become magnetic due to transformation of austenite to martensite during cold working or even machining, if the surface is heavily deformed. A corrective anneal or the selection of an alloy with a lower work-hardening rate may be necessary if a low magnetic permeability is required for the intended application. Corrosion resistance of austenitic alloys varies from good to excellent, again depending on alloy content.

The most common austenitic stainless steel is Type 304, which contains approximately 18 percent chromium and 8 percent nickel. In addition to the alloying variations noted above, higher chromium, higher nickel, molybdenum or copper may be added to improve particular aspects of corrosion or oxidation resistance. Examples are Type 316, Type 309, Type 310 and 20Cb-3® stainless. Many of the more corrosion-resistant alloys, such as 20Cb-3 stainless, have nickel levels high enough to rate classification as nickel-base alloys. Titanium or columbium is added to stabilize carbon in alloys such as Type 321 or Type 347, in order to prevent intergranular corrosion after elevated-temperature exposure. Conversely, carbon levels are reduced to low levels during melting to produce the AISI "L" or "S" alloys, such as Type 304L, Type 316L or Type 309S.

Ferritic Alloys

Ferritic stainless steels have a body-centered cubic structure and are magnetic. In the annealed condition they have a tensile yield strength of about 40-50 ksi (275-345 MPa). They are generally hardenable only by cold working, but not to the same extent as the austenitic stainless steels. The alloys possess fairly good ductility in the annealed condition, but are not used where toughness is a concern. They have a broad range of corrosion resistance, depending on alloy content. However, as a class, they are considered less corrosion resistant than the austenitic alloys.

The most well-known alloy of this family is Type 430, which is an iron-base alloy with 16-18 percent chromium. Other alloys, such as Type 405 or Type 409, contain lower chromium. Higher levels of chromium are used in alloys such as Type 443 or Type 446 for improved corrosion or oxidation resistance. Molybdenum is added to certain alloys, such as Type 434, in order to improve corrosion resistance, particularly in chloride-containing solutions. Titanium or columbium is used to stabilize carbon and nitrogen in order to improve the as-welded properties of alloys like Type 409.

Martensitic Alloys

Martensitic stainless steels have a body-centered cubic/tetragonal structure and are magnetic. In the annealed condition they have a tensile yield strength of about 40 ksi (275 MPa) and, like the ferritic alloys, can be moderately hardened by cold working. However, martensitic alloys are normally heat treated by hardening plus tempering to yield strength levels up to about 280 ksi (1930 MPa), depending primarily on carbon level. The alloys exhibit good ductility and toughness, which decrease, however, as strength capability increases.

The most commonly used alloy of this family is Type 410, which contains about 12 percent chromium and 0.1 percent carbon to provide strengthening. Carbon level and, consequently, strength

capability increase in the series Type 420, Type 440A, Type 440B, and Type 440C. Chromium is increased, particularly in the latter three alloys, to maintain corrosion resistance since chromium is removed from solution, forming carbides with increasing carbon level. Molybdenum may be added to improve mechanical properties or corrosion resistance, as in TrimRite® stainless. Nickel may be added for the same reasons, as in Type 414. Nickel also serves to maintain the desired microstructure, preventing excessive free ferrite, when higher chromium levels are used to improve corrosion resistance in a lower-carbon alloy like Type 431. The limitations on alloy content required to maintain the desired fully martensitic structure limit the corrosion resistance obtainable with martensitic alloys to only moderate levels.

Duplex Alloys

Duplex stainless steels contain a mixture of ferrite and austenite and are magnetic. They have tensile yield strengths of about 80 ksi (550 MPa) in the annealed condition, or about twice that of the standard austenitic alloys. Strength can be increased by cold working. The alloys have good ductility and toughness along with excellent corrosion resistance.

The original alloy in this classification was 7-Mo® stainless or Type 329, which contains chromium, molybdenum and sufficient nickel to provide the desired balance of ferrite and austenite. More recent alloys, such as 7-Mo PLUS® stainless, also contain nitrogen and a different austenite/ferrite balance.

Precipitation-Hardenable Alloys

Precipitation-hardenable stainless steels are categorized by their ability to be age hardened to various strength levels. The alloys can be subdivided into the austenitic (e.g., Pyromet® alloy A-286), martensitic (e.g., Custom 630, 17Cr-4Ni) or semi-austenitic classifications (e.g., Pyromet alloy 355). The latter alloys may have an austenitic structure for formability, but can be subsequently

transformed to martensite and aged to the desired strength level. Depending on the type of alloy, precipitation-hardenable stainless steels can reach tensile yield strength levels of up to 250 ksi (1725 MPa) in the aged condition. Cold working prior to aging can result in even higher strengths. The alloys generally have good ductility and toughness with moderate-to-good corrosion resistance. A better combination of strength and corrosion resistance is obtainable than with the martensitic alloys.

The most well-known precipitation-hardenable stainless steel is Custom 630. It contains chromium and nickel, as do all precipitation-hardenable stainless steels, with copper for age hardening and columbium to stabilize carbon. Age-hardening agents used in other alloys include titanium (Custom 455® stainless), aluminum (PH 13-8 Mo*), and columbium (Custom 450® stainless). Molybdenum may be added to improve mechanical properties or corrosion resistance. Both molybdenum and copper are added for corrosion resistance in Custom 450 stainless. Carbon is normally restricted, except in semi-austenitic alloys such as Pyromet alloy 355 where it is necessary to provide the desired phase transformations.

Free-Machining Alloys

Free-machining alloys contain a free-machining additive such as sulfur to form inclusions which significantly improve overall machining characteristics. In some cases, other compositional changes may be made either within or outside the broad compositional ranges of the corresponding non-free-machining alloy. Such additional compositional changes may serve to improve machining characteristics beyond that obtained by the simple addition of the free-machining agent.

^{*}Registered trademark of AK Steel Corp.

It is important to recognize that the benefit of improved machining characteristics is not obtained without changes in other properties. In particular, the following properties may be degraded by the addition of a free-machining agent:

1.	corrosion resistance
2.	transverse ductility and toughness
3.	hot workability
4.	cold formability
5.	weldability

Contact a Carpenter representative for alloy availability.

In some cases, variants of the basic free-machining alloy are available to provide an optimum combination of machinability with another property. However, the trade-off among the various properties must still be considered when selecting an alloy; i.e., the ease of machining must be balanced against the possible reduction in other important properties, such as corrosion resistance.

Table 1 shows the relationship between non-free-machining and free-machining alloys within the ferritic, martensitic and austenitic families. Free-machining alloys are currently not available in the duplex or precipitation-hardenable families. Since duplex alloys are noted for excellent corrosion resistance but have somewhat limited hot workability, the addition of a free-machining agent, which would likely degrade both properties, would be undesirable. Likewise, precipitation-hardenable alloys are noted for good toughness at high strength levels, making it undesirable to add large amounts of a free-machining agent, which would degrade toughness.

Table 1

Correspondence of Non-Free-Machining and Free-Machining Stainless Steels			
Non-Free-Machining	Related Free-Machining Alloys		
Alloys	Se-bearing Alloys	S-bearing Alloys	
Ferritic Type 430 18Cr-2Mo Type 434	 - -	Type 430F 182-FM ^(a) Type 434F	
Martensitic Type 410 Type 420 Type 440C	Type 416-Se — Type 440-Se	Type 416 No.5F ^(b) Type 420F Type 440F	
Austenitic — Type 304 Type 302 HQ Type 316 Type 347	Type 303Se Type 347-Se	Type 203 Type 303 Type 303Al Modified®(c) Type 302HQ-FM®(d) Type 316F Type 347F	

⁽a) Does not contain Ti

Contact a Carpenter representative for alloy availability.

Table 1 shows that the best-known alloys in the three families represented, Type 430 (ferritic), Type 410 (martensitic) and Type 304 (austenitic), have corresponding free-machining alloys. In addition, the more corrosion-resistant molybdenum-bearing alloys 18Cr-2Mo and Type 316 have free-machining versions in the ferritic and austenitic families, respectively; and the higher-carbon, higher-strength alloys Type 420 and Type 440C have free-machining versions in the martensitic family. Thus, there are a variety of basic free-machining alloys available to satisfy the two most important selection criteria for stainless steels—corrosion resistance and mechanical properties (strength/hardness).

A variety of other distinctions may be made among the other alloys listed in Table 1. Free-machining versions are available for Type 347, a columbium-stabilized austenitic alloy, and for Type 302HQ, a copper-bearing alloy noted for a low work-hardening rate and

⁽b) Not hardenable

⁽c) Contains Al

⁽d) Contains lower Cu

excellent cold formability for an austenitic alloy. The free-machining version of Type 302HQ, 302HQ-FM® stainless, is intended to offer a good combination of cold formability and machinability. Another alloy which can offer this combination of properties is Type 303Al Modified® stainless. The selenium-bearing free-machining alloys such as Type 303 Se are also noted for better cold formability than the sulfur-bearing alloys, and may be used where machined surface finish is more important than tool life. Type 203, which lacks a corresponding non-free-machining version, is a high-manganese, high-copper alloy with excellent machinability for an austenitic alloy. It can be substituted for Type 303, where specifications permit.

Finally, versions of Type 303, Type 416, and Type 430F are available to provide combinations of properties not obtainable with the standard alloys. The compositions of such versions still fall within the broad ranges of the standard alloy. For instance, Type 303 and Type 416 are available in "forging quality" versions, intended to provide a good combination of hot workability and machinability. Type 416 is also available in a "bright quench" version, Type 416 BQ, intended to provide a higher quenched hardness level after bright hardening. Type 430F is available as "solenoid quality" versions, Type 430F Solenoid Quality and Type 430FR Solenoid Quality, for optimum soft-magnetic properties.

Project 70+® Stainless Enhanced-Machining Alloys

As described earlier, compositions of alloys may be modified within the broad limits to provide an optimum combination of properties. In a similar manner, compositions may be modified to provide optimum machining performance alone. Processing of the alloy may also be modified to further improve machining performance. This approach has been taken with both non-free-machining and free-machining alloys, resulting in enhanced-machining alloys, several of which are designated by Carpenter as Project 70+® stainless alloys,

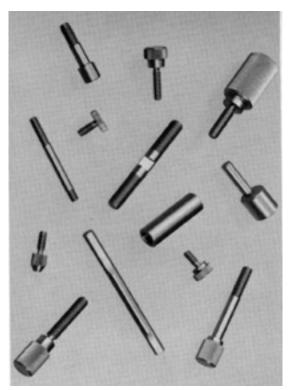

and meet the same specifications as the standard alloys. It should be noted that the enhanced-machining versions of the non-free-machining alloys provide machining performance superior to that of the corresponding standard alloys, but still do not provide the machinability of comparable free-machining alloys. However, other properties, such as corrosion resistance, ductility, toughness, weldability, cold formability, etc., will be superior to those of the corresponding free-machining alloy. Thus, the enhanced-machining versions of the non-free-machining alloys provide a way to obtain improved machining performance without significant degradation of other properties. Table 2 provides a listing of the alloys that are available with enhanced machining performance.

Table 2

Machining Alloy Versions of:			
Enhanced-Machining Alloys	Free-Machining Alloys		
Project 70+® Type 304/304L Project 70+ Type 316/316L Type 309 A.B.Q® Project 70+ Custom 630 Project 70+ 15Cr-5Ni	Project 70+® Type 416 Project 70+ Type 303 No. 5-F		

Certain of the alloys in Table 2 are available in more than one enhanced-machining version. For instance, Type 416 is available in an enhanced-machining version still meeting certain minimum hardness requirements, and, in a version designated No. 5-F, providing even higher machining performance but having limited hardness capability.

Machinability of stainless steels can be affected by changes in processes to provide a variety of levels of machining performance. The level of machinability necessary and the compromises to be made with other properties depend on the needs of the user. Before specifying or purchasing an alloy, consult Carpenter Specialty Alloys Operations to determine the proper alloy, or, more important, the proper version of the alloy, and its availability.

Longer tool life and fewer rejects were experienced with Carpenter's premier machining stainless over generic stainless steels.

Machinability of Stainless Steels

Definitions of Machinability

Defining "machinability" is not a simple matter for two reasons. First, machinability does not mean the same thing to everyone. If the specific aspect of machinability one is interested in is not defined, there will be no basis for a common discussion or understanding. Second, machinability can only be evaluated in a complex, multi-variable system. Again, if all the variables are not defined, misunderstanding can result.

The following list includes some of the specific definitions included in the general concept of machinability:

tool life or tool wear
 machined surface finish
 chip disposability, or how easily chips are removed from the cutting area
 maximum cutting rate
 productivity, or how quickly the largest number of acceptable parts can be produced

These definitions may be interdependent in various ways. For instance, machined surface finish depends on how the tool is wearing. Cutting rate is related to tool life, but is influenced by other factors. Productivity obviously can encompass all the other factors.

Some of the variables which may affect the perception of machinability are as follows:

- 1. rigidity of the tooling or fixtures
- 2. type of tools, e.g., high-speed steel versus carbide
- 3. tool design, e.g., rake angles, relief angles, etc.
- 4. type and composition of the cutting fluid, e.g., mineraloil-base cutting fluids versus emulsifiable cutting fluids

In addition, the type of machining operation itself can affect the perception of machinability. For instance, alloys may behave differently in drilling than in turning.

Because of these and other variables involved, machinability rankings among alloys must be viewed with caution. Such rankings may not apply to all aspects of machining performance or to all types of machining operations, and may vary from producer to producer. In addition, the rankings should only be used on a relative basis; absolute, or numerical, comparisons are only for illustrative purposes and cannot be expected to apply in all cases, even for the same type of machining operation.

General Machining Properties

Austenitic Alloys

Austenitic stainless steel, of all the groups, is the most difficult to machine. Compared with ferritic and martensitic alloys, typical austenitic alloys have a higher work-hardening rate, a wider spread between yield and ultimate tensile strengths, and higher toughness and ductility. When machining austenitic stainless steels, particularly the non-free-machining alloys, tools will run hotter with more tendency to a large built-up edge; chips will be stringier with a tendency to tangle, making their removal difficult; there will be a tendency

for inadequate or marginal tool rigidity to result in chatter; and cut surfaces will be work-hardened and difficult to machine if cutting is interrupted or feed rate is too low. Because of these factors, the precautions spelled out for machining stainless steels in general must be particularly adhered to for austenitic alloys.

The greatest benefit to the machinability of austenitic stainless steels is brought about by the addition of free-machining agents such as sulfur. For example, Type 303 has a machinability rating between those of the non-free-machining (Type 430F, Type 410) and free-machining (Type 430F, Type 416, etc.) versions of the ferritic and annealed low-carbon martensitic alloys. The following variables also will influence machinability:

- 1. cold drawing
- 2. work-hardening rate, as modified by alloy content
- 3. grain size

A moderate cold draft has generally been regarded as beneficial to the overall machining characteristics of austenitic stainless steels. The cold draft will reduce the ductility of the material, which results in cutting with a cleaner chip and less tendency toward a built-up edge. A better machined surface finish will result. Drilling, however, may be favored by softer material.

The high work-hardening rate of the lower-alloy-content austenitic stainless steels can be decreased by additions of manganese or copper. Such additions will also increase machinability. Austenitic free-machining alloys making use of additions of manganese or copper include Type 203 and 302HQ-FM® stainless. Although higher alloy content generally reduces work-hardening rate, it may not necessarily benefit machinability. Highly alloyed austenitic stainless steels, such as Type 310 and 20Cb-3® stainless, tend to be more difficult to machine.

Grain size will generally increase strength and reduce ductility. Grain size also changes the flow characteristics of the material at the cutting edge. At typical tensile properties, a finer grain size will increase the tendency toward built-up edge and stringy chips. However, combining a fine grain structure with high cold drafts will increase surface finishes and improve chip characteristics.

Ferritic and Martensitic Alloys

Free-machining ferritic alloys (Type 430F, etc.) and annealed, low-carbon free-machining martensitic alloys (Type 416, etc.) are the easiest to machine of the stainless steels. In fact, their machinability ratings approach and in some cases are comparable to those of certain free-machining carbon steels. The non-free-machining lower-chromium ferritic alloys (Type 430) and annealed, low-carbon, straight-chromium martensitic alloys (Type 410) are also generally easier to machine than the majority of other non-free-machining alloys. The higher-chromium ferritic alloys, such as Type 446, are considered by some to be somewhat more difficult to machine than the lower-chromium alloys, due to "gumminess" and stringy chips.

Other than the presence or lack of a free-machining additive like sulfur, the machining characteristics of martensitic stainless steels are influenced by the following variables:

hardness level
 carbon content
 nickel content

Increasing hardness level for a particular alloy results in a decrease in machinability as measured by tool life, drillability, etc. Surface finish and chip characteristics, however, can be improved by machining harder material. Type 416 is normally supplied in one of three hardness ranges: annealed (condition A), 262HB max.; intermediate temper (condition T), 248-302HB; or hard temper (condition H),

293-352HB. Based on the above information, condition T is expected to provide a good combination of tool life and machined surface finish.

As the carbon content increases from Type 410 to Type 420 to Type 440C, or from Type 416 to Type 420F to Type 440F, machinability decreases. With higher carbon levels, there also tends to be a smaller difference in machinability between the corresponding free-machining and non-free-machining versions. These effects are primarily due to the increasing quantities of abrasive chromium carbides present as carbon level increases in this series of alloys. As a further detriment to machinability, annealed hardness level increases with increasing carbon level.

Nickel content also influences machinability by increasing annealed hardness levels. Consequently, alloys such as Type 414 and Type 431 will be more difficult to machine than Type 410 in the annealed condition.

Duplex Alloys

The machinability of duplex stainless steels is limited by their high annealed strength level. The machinability of the duplex alloy 7-Mo PLUS® stainless lies between that of a high-nitrogen austenitic alloy, 22Cr-13Ni-5Mn, and a conventional austenitic alloy, Type 316. Note that 7-Mo PLUS stainless has a hardness level comparable to that of 22Cr-13Ni-5Mn, but provides better machinability. However, it does not machine as well as Type 316.

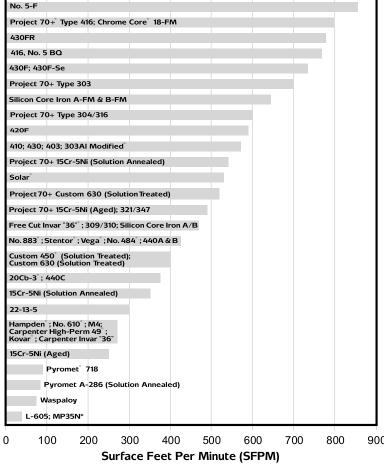
Other nitrogen-bearing duplex alloys are expected to machine similarly to 7-Mo PLUS stainless. At this point, there are no enhanced-machining versions of duplex alloys.

Precipitation-Hardenable Alloys

The machinability of precipitation-hardenable stainless steels depends on the type of alloy and its hardness level. Martensitic precipitation-hardenable stainless steels are often machined in the solution-treated condition, so that only a single aging treatment is required afterward to reach the desired strength level. In this condition, the relatively high hardness limits machinability. Most of these alloys machine comparably to or somewhat worse than an austenitic alloy such as Type 304 in its non-enhanced-machining version. Stainless 17Cr-4Ni is available in an enhanced-machining version, Project 70+® Custom 630 stainless, which approaches the machinability of Project 70+ Type 304 stainless.

Martensitic precipitation-hardenable stainless steels may also be machined in an aged condition so that heat treating can be avoided and closer tolerances maintained. The ease of cutting generally varies with the hardness or heat-treated condition, with harder material requiring more horsepower to machine. The use of coated carbide tools or coated high speed steels such as M48 or T15 may enable these alloys to be machined in the hardened condition. Chips are less stringy and surface finishes are better, but the increased hardness can result in faster tool wear. Tool coatings such as TiAlN or TiCN can help decrease tool wear.

In the annealed, austenitic condition, semi-austenitic alloys can be expected to machine with difficulty, somewhat worse than an alloy like Type 302, which has a high work-hardening rate. Pyromet® Alloy 350 and Pyromet Alloy 355 can be supplied in an equalized and over-tempered condition, which will provide the best machinability from a tool wear position. As with the martensitic precipitation-hardenable alloys, machining is possible in the age hardened condition.


Austenitic precipitation-hardenable alloys, such as Pyromet Alloy A-286, machine quite poorly, requiring slower cutting rates than even the highly-alloyed austenitic stainless steels. Machining in an aged condition will require coated carbide tooling and a rigid setup.

Relative Machinability of Stainless Steels and Other Alloys

Single Point Turning Speed Comparison Coated Carbide Tools

Alloys

*MP35N is a trademark of SPS Technologies, Inc. MP is a registered trademark of SPS Technologies, Inc.

Contact a Carpenter representative for alloy availability.

The Carpenter Selectaloy® Method

The problem facing the manufacturer working with stainless steels becomes the difficult one of choosing the right steel for a particular job.

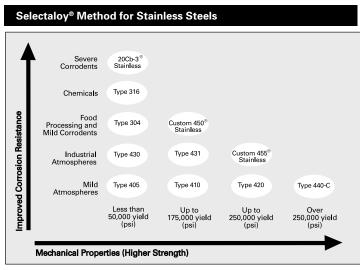
While many attempts have been made to portray a simple picture of the stainless steel family, Carpenter's Selectaloy® method represents perhaps the first useful selection method for the stainless steel industry.

Criteria for Selecting

Before one can utilize this method, there are certain variables which must be considered in the choice of any stainless steel.

The proper selection technique for the application/evaluation of each of the more than 50 grades of stainless steel is based upon five important criteria.

In order of importance, these requirements are:


- 1. **Corrosion Resistance** The primary reason for specifying stainless steel. The level of corrosion resistance required and the corrosive environment expected must be known when selecting a stainless alloy. If corrosion were not a problemthere would be little need for using stainless steel.
- 2. **Mechanical Properties -** In particular, special emphasis should be placed upon the alloy's strength. Together with the corrosion resistance factor, this second requirement designates the specific alloy type for the application.

- 3. **Fabrication Operations** How the material is to be processed. This includes such special considerations as the steel's ability to be machined, welded, cold headed, etc.
- 4. **Total Cost** The overall value analysis figure of the stainless steel, including initial alloy price, fabrication costs, and the effective life expectancy of the finished product.
- 5. **Product Availability** Availability of the raw material from the mill, service center, warehouse, or supplier is a final consideration in choosing the most economical and practical stainless steel.

Although these factors have long been known throughout the industry, a careful consideration of their relative importance has often been a time consuming and frustrating experience for the veteran stainless metallurgist as well as the apprentice. This problem arises not from a lack of information, but is a result of the publication of volumes of uncoordinated material.

Carpenter Specialty Alloys has developed a simple selection technique for choosing the proper stainless steel for the end use application that you have in mind. It is called the Selectaloy Method for classifying and selecting stainless steel.

Carpenter's Selectaloy® Method is easy to use.

Selectaloy® arrows and ovals diagram registered in the U.S. Patent Office. Selectaloy® is a registered trademark of CRS Holdings, Inc., a subsidiary of Carpenter Technology Corporation. All rights reserved.

Contact a Carpenter representative for alloy availability.

The Selectaloy Projection utilizes 11 basic stainless steels which are representative of certain classifications of types of stainless alloys. The first five steels: 20Cb-3® stainless, Type 316, Type 304, Type 430, and Type 405, are plotted vertically in order of their resistance to corrosion, the most important criterion in choosing stainless steel. Note Type 304 is midway between 20Cb-3 stainless (most resistant) and Type 405 (least resistant) on the corrosion scale. Reading across the chart, the steels increase in strength as you move away from Type 405. Simple additions of carbon plus chromium increase the strength capability of Type 410, Type 420 and Type 440-C while maintaining their corrosion resistance.

All five factors previously mentioned must be considered before making your selection; however, it is wise to start with corrosion resistance.

Selecting for Corrosion Resistance

As you see on the Selectaloy chart, the effectiveness of corrosion resistance begins with an alloy like Type 405, which is useful in less severe environments, and rises in effectiveness along the left side of the chart until it reaches its peak corrosion resistance with 20Cb-3 stainless, an austenitic stainless steel.

When you are looking for the right stainless for a particular application, it is often best to begin your search with Type 304—the most widely used 18-8 stainless. Its middle level of corrosion resistance makes it a candidate for a wide range of corrodents from foodstuffs to organic chemicals.

Should your industrial process require a higher level of resistance, you would move up the Selectaloy scale to Type 316, which adds molybdenum to the composition, helping it to resist process chemicals, acids, bleaches and other highly corrosive materials.

If your application requires less in the way of corrosion resistance than these types offer, perhaps Type 430 or even Type 405 on the lowest level of corrosion resistance may suffice. Conversely, for the most severe corrosive environments you would move to the top level, 20Cb-3 stainless, which provides optimum resistance to hundreds of industrial and process corrodents (including up to 40% sulfuric acid at the boiling point).

Once corrosion levels have been determined, careful consideration of mechanical properties is necessary to select the proper grade for the application.


Selecting for Mechanical Strength

Supposing the corrosion resistance of Type 405 is adequate but higher strength is needed, moving over to Type 410 may provide the combination of properties required.

However, in many cases, the strength offered by Type 410 may not be sufficient. For greater strength and hardness, at the same level of corrosion resistance, Type 420 is specified. And for products requiring the highest hardness values within the same corrosion-resistance level, you would move extreme right to Type 440-C, the stainless steel with the greatest hardness.

Enhanced Selectaloy® Diagram

When seeking greater strength with good corrosion resistance, the specifier should check the family of nitrogen-strengthened and other alloys shown in the Enhanced Selectaloy Diagram.

Contact a Carpenter representative for alloy availability.

Nitrogen Strengthened Grades

Many applications require a balanced combination of improved strength and corrosion resistance. When seeking greater strength with good corrosion resistance, the specifier should check the family of nitrogen-strengthened alloys shown in the Enhanced Selectaloy Diagram. The five alloys in the second column have comparable

mechanical properties, with yield strength of 50 ksi (345 MPa) to 70 ksi (482 MPa) as annealed, and strength levels in excess of 100 ksi (689 MPa) when cold worked.

A new nitrogen strengthened grade, BioDur® 108 alloy, discussed in the following "Other Grades to Consider" section, has an annealed yield strength in excess of 85 ksi (586 MPa) with a tensile strength in excess of 130 ksi (896 MPa).

These alloys are austenitic stainless grades with nitrogen added for improved strength and corrosion resistance. All of them, except Gall-Tough® stainless, remain nonmagnetic even after severe cold working.

The group starts with 18Cr-2Ni-12Mn stainless, which has corrosion resistance similar to Type 430 stainless. It offers an excellent combination of toughness, ductility, corrosion resistance, strength and good fabricability. Farther up the scale are Gall-Tough stainless, Gall-Tough PLUS® stainless and 21Cr-6Ni-9Mn stainless. These three grades have corrosion resistance ranging between Type 304 stainless and Type 316 stainless with twice the yield strength and excellent high temperature strength.

Gall-Tough stainless and Gall-Tough PLUS stainless, which are resistant to galling, may be considered for applications such as valve and pump components, shafts, bridge pins, fasteners, wire and orthodontic parts. 21Cr-6Ni-9Mn stainless has been used generally for airframe and aircraft engine parts, steam and autoclave components, parts exposed to reciprocating engine exhausts, etc.

The most corrosion resistant stainless in this family is 22Cr-13Ni-5Mn stainless. This alloy has better corrosion resistance than Type 316 stainless, and twice the yield strength. It provides high level resistance to pitting and crevice corrosion and very good resistance in many reducing and oxidizing acids and chlorides.

Other Grades to Consider

Custom 465® stainless is a premium melted, martensitic, age hardenable alloy capable of about 260 ksi (1793 MPa) ultimate tensile strength when peak aged. The alloy was designed to have excellent notch tensile strength and fracture toughness in this condition.

Overaging provides a superior combination of strength, toughness and stress corrosion cracking resistance compared with other high strength precipitation hardenable stainless alloys such as Custom 455 stainless or PH 13-8 Mo* stainless.

This alloy may be considered for medical instruments such as screwdrivers, nut drivers, and instruments for clamping, spreading and impacting; for a variety of aerospace applications including aircraft landing gear, engine mounts, flap tracts, actuators, tail hooks and other structural components; also for shafting subject to heavy stress, bolts, fasteners and other parts requiring an exceptional combination of high strength, toughness and corrosion resistance.

BioDur® 108 alloy is a fully austenitic stainless steel with less than 0.05% nickel that has been designed as a candidate to meet high standards for bio-compatibility in medical applications. Tests for cytotoxicity, irritation, acute systemic toxicity and pyrogenicity have indicated that the alloy is a good candidate for implanted medical devices.

High nitrogen content gives this alloy improved levels of tensile and fatigue strength as compared with nickel-containing alloys such as BioDur 22Cr-13Ni-5Mn alloy and BioDur 734 alloy. The resistance of BioDur 108 alloy to pitting and crevice resistance is superior to Type 316L alloy and equal to that of BioDur 22Cr-13Ni-5Mn alloy and BioDur 734 alloy. The new alloy is produced by the ElectroSlag Remelting (ESR) process to assure its microstructural integrity and cleanness.

BioDur 108 alloy could be considered for use in applications requiring high levels of strength and corrosion resistance. Candidate applications include implantable orthopedic devices such as bone plates, bone screws, spinal fixation components, hip and knee components, jewelry, orthodontic applications and other medical components/instruments fabricated by forging and machining.

*PH 13-8 Mo stainless is a registered trademark of AK Steel Corp..

Traditional Machining Operations

General Considerations and Guidelines

Note that feeds and speeds in machining tables are suggested starting points. Depending on a number of factors including tool condition and operator experience, you may be able to increase the values.

There is no single set of rules or simple formula that will prove best for all machining situations. The requirements of pertinent specifications together with the equipment and the materials being used must determine the machining parameters that will apply. Stainless steels have a high alloy content which reduces machinability, but free-machining stainless steels are available which compare favorably with some free-machining carbon steels. As discussed previously, the characteristics of stainless steels that have the greatest influence on machinability include: relatively high tensile strength; high workhardening rate, particularly for the austenitic alloys; and high ductility. These factors explain the material's tendency to form a built-up edge during machining. The chips removed in machining exert high pressures on the nose of the tool, and therefore tend to weld fast. This causes the tool to run hot. In addition, the low thermal conductivity of stainless steels contributes to a rapid heat buildup.

Difficulties in machining stainless steels as a result of the above factors can be minimized by observing the following points:

1. Because more power is generally required to machine stainless steels, equipment should be used only up to about 75% of the rating for carbon steels.

- To avoid chatter, tooling and fixtures must be as rigid as
 possible. Overhang or protrusion of either the workpiece
 or the tool must be minimized. This applies to turning tools,
 drills, reamers, etc.
- 3. To avoid glazed, work-hardened surfaces, particularly with austenitic alloys, a positive feed must be maintained. In some cases, increasing the feed and reducing the speed (see following) may be necessary. Dwelling, interrupted cuts or a succession of thin cuts should be avoided.
- 4. Lower cutting speeds may be necessary, particularly for non-free-machining austenitic alloys, precipitation-hardenable stainless steels or higher-hardness martensitic alloys. Generally, excessive cutting speeds result in tool wear or tool failure and shutdown for tool regrinding or replacement. Slower speeds with longer tool life are often the answer to higher output and lower costs. However, recent advances in tool materials, coatings and design have allowed faster cutting rates.

- 5. Tools, both high-speed steel and carbide, must be kept sharp, with a fine finish to minimize friction with the chip. A sharp cutting edge produces the best surface finish and provides the longest tool life. In order to produce the best cutting edge on high-speed steel tools, 60 grit roughing should be followed by 120 grit and 150 grit preparation. Honing or stoning produces an even finer finish.
- 6. Cutting fluids must be selected or modified to provide proper lubrication and heat removal. Fluids must be carefully directed to the cutting area at a sufficient flow rate to prevent overheating.

TURNING

Turning Parameters

Turning operations on automatic screw machines, turret lathes and CNC lathes involve so many variables that it is impossible to make specific recommendations which would apply to all conditions. Suggested tool angles, cutting speeds and feeds are primarily starting points for each specific job. The turning tables on pages 37 and 39 represent reasonable speeds and feeds for single-point turning and the tables on pages 38 and 40 for cut-off and forming operations.

Single-Point Turning Tools

Grinding tools properly is particularly important in machining stainless steels. Figure 1 illustrates suggested starting geometries for high-speed steel single-point turning tools. Tools with a 5 to 20° positive top rake angle for HSS tooling will generate less heat and cut more freely with a cleaner surface. It also is beneficial to select as large a tool as possible to provide a greater heat sink, as well as a more rigid setup. To ensure adequate support for the cutting edge, the front clearance angle should be kept to a minimum, i.e., $7 \text{ to } 10^{\circ}$, as shown. Austenitic stainless steels, due to their toughness and work-hardening characteristics, require tools ground with top rake angles on the high side of the $5 \text{ to } 20^{\circ}$ range to control the chips and may require increased side clearance angles to prevent rubbing and localized work hardening.

The non-free-machining stainless steels tend to produce long, stringy chips which can be very troublesome. This difficulty can be alleviated by using chip curlers or chip breakers which, in addition to controlling long chips, also reduce friction on the cutting edge of the tool. Chip breakers or curlers for the free-machining stainless steels do not need to be as deep as those for the non-free-machining alloys. Otherwise, the depth of cut and feed rate usually govern the width and depth of the curler or breaker. Heavier chips require

deeper curlers or breakers; however, they must be ground without weakening the cutting edge. If a chip curler or breaker cannot be ground into the tool, it is advisable to have a steep top rake angle.

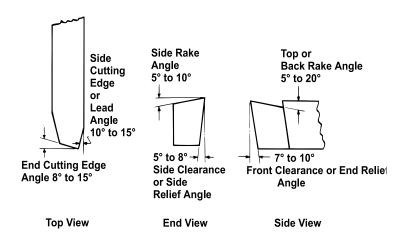


Fig. 1. Suggested geometries for single-point turning tools used on stainless steels.

Carbide tools can be used in single-point turning operations and will allow higher speeds than high-speed steel tools. However, carbide tooling requires even greater attention to rigidity of tooling and the workpiece, and interrupted cuts should be avoided.

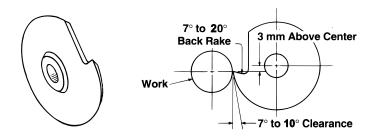


Fig. 2. Suggested geometries for circular cut-off tools used on stainless steels.

Stainless Steels Turning—Single Point and Box Tools

The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

		Micro	-Melt® P	owder	Carbide Tools (inserts)					
			Speed				d (fpm)	101		
Alloy (Annealed Condition)	Depth of Cut (inches)	Tool Mtl.	Speed (fpm)	Feed (ipr)	Tool Mtl.	Un- coated		Feed (ipr)		
410	.150	M48, T15	120	.015	C6	435	570	.015		
	.025	- '	150	.007	C7	535	670	.007		
416	.150 .025	M48, T15	192 204	.015 .007	C6 C7	615 715	765 815	.015 .007		
No. 5 BQ	.150	M48, T15	192	.015	C6	615	765	.015		
NO. 5 BQ	.025	10140, 113	204	.007	C7	665	815	.007		
Project 70+® 416	.150	M48, T15	210	.015	C6	640	795	.015		
	.025 150		240 255	.007 .015	C7 C6	715 680	895 855	.007 .015		
No. 5-F	.025	M48, T15	295	.007	C7	755	955	.007		
420	.150	M48, T15	102	.015	C6	375	500	.015		
420	.025	10140, 115	120	.007	C7	450	600	.007		
420F	.150	M48, T15	126	.015	C6	465	590	.015		
	.025 .150		156 96	.007 .015	C7 C6	535 350	665 475	.007 .015		
431	.025	M48, T15	114	.007	C7	425	575	.007		
440A/440B	.150	M48, T15	90	.015	C6	325	425	.015		
440A/440D	.025	10140, 115	96	.007	C7	400	550	.007		
440C	.150	M48, T15	78	.015	C6	290	375	.015		
	.025 .150		90 102	.007 .015	C7 C6	340 425	475 525	.007 .015		
440F	.025	M48, T15	120	.007	C7	475	575	.007		
430	.150	M//0 T1E	120	.015	C6	435	570	.015		
430	.025	M48, T15	150	.007	C7	535	670	.007		
430F/430FR	.150	M48, T15	198	.015	C6	600	735	.015		
	.025 .150	· ·	222 114	.007 .015	C7 C2	675 400	835 500	.007 .015		
443	.025	M48, T15	132	.007	C3	475	600	.007		
182-FM	.150	M48, T15	210	.015	C6	625	800	.015		
102-FIVI	.025	10140, 113	220	.007	C7	675	900	.007		
302/304/316	.150	M48, T15	102	.015	C2	350	450	.015		
	.025	,	120	.007	C3	400	525 600	.007		
Project 70+® 304/316	.150 .025	M48, T15	140 171	.018 .0084	C2 C3	470 530	660	.018 .0084		
302HQ-FM®	.150	M40 T1E	120	.015	C2	425	525	.015		
302HQ-FIVI-	.025	M48, T15	144	.007	C2	475	600	.007		
303	.150	M48, T15	105	.015	C2	425	600	.015		
	.025		130	.007	C2 C2	500	700	.007		
Project 70+® 303	.150 .025	M48, T15	171 202	.018 .0084	C2	580 680	700 800	.018 .0084		
303Al Modified®	.150	MAO TAE	120	.015	C2	435	570	.015		
JUJAI MUUIIIEU-	.025	M48, T15	144	.007	C2	485	605	.007		
203	.150	M48, T15	105	.015	C2	425	600	.015		
	.025 .150		130 102	.015 .015	C2 C2	425	600 490	.015		
321/347	.025	M48, T15	120	.015	C2	385 435	565	.015 .007		
2001- 20 04-1-1	.150	MAO TAE	78	.015	C2	290	375	.015		
20Cb-3® Stainless	.025	M48, T15	90	.007	C3	390	425	.007		
18Cr-2Ni-12Mn	.150	M48, T15	72	.015	C6	250	300	.015		
	.025		84 66	.007	C7	300	350	.007		
21Cr-6Ni-9Mn	.150 .025	M48, T15	66 84	.015 .007	C6 C7	250 300	300 350	.015 .007		
000- 4081: 584-	.150	MAO TAE	66	.015	C6	250	300	.015		
22Cr-13Ni-5Mn	.025	M48, T15	84	.007	C7	300	350	.007		

Stainless Steels Turning—Cut-Off and Form Tools

		Mtl.		Feed (inches per revolution)						
Alloy	Micro- Melt [®] Powder	Car- bide	Speed (fpm)	Cut-Off and Form Tools Width (inches)						
(Annealed Condition)	HS Tools	Tools	(ipiii)	1/16	1/8	1/4	1/2	1	1½	2
410	M48, T15		108	.001	.001	.002	.0015	.001	.001	.001
410		C6	390	.004	.0055	.007	.005	.004	.0035	.0035
416	M48, T15		120	.0015	.002	.0025	.002	.0015	.001	.001
		C6	408	.004	.005	.007	.005	.004	.0035	.0035
No. 5 BQ	M48, T15	C6	162 420	.0015	.002	.0025	.002	.0015	.001	.001
	M48, T15	L C O	180	.004	.005	.007	.005	.004	.0035	.0035
Project 70+® 416	19140, 1113	C6	432	.0013	.005	.0023	.002	.0020	.0035	.0035
No. 5-F	M48, T15		192	.002	.0025	.003	.0025	.002	.002	.002
NO. 5-F		C6	444	.004	.005	.007	.005	.004	.0035	.0035
420	M48, T15		90	.001	.0015	.002	.015	.001	.001	.001
720		C6	330	.004	.005	.006	.005	.004	.003	.003
420F	M48, T15	-	120	.001	.0015	.002	.0015	.0015	.001	.001
	1446 =:-	C6	390	.004	.005	.007	.005	.004	.0035	.0035
431	M48, T15	C6	78 240	.001	.001	.0015	.0015	.001	.001	.0005
	M48, T15	_ C6	66	.004	.0055	.007	.005	.004	.0035	.0005
440A/440B	10146, 115	C6	246	.004	.0055	.0015	.005	.001	.0035	.0005
	M48, T15	- 00	60	.001	.0033	.0015	.003	.001	.0033	.0005
440C		C6	210	.003	.003	.0045	.003	.002	.002	.002
440F	M48, T15		90	.001	.001	.0015	.0015	.001	.001	.0005
4401		C6	300	.004	.055	.007	.005	.004	.0035	.0035
430	M48, T15		108	.001	.001	.0015	.0015	.001	.001	.001
		C6	390	.004	.0055	.007	.005	.004	.0035	.0035
430F/430FR	M48, T15		180	.0015	.002	.0025	.0025	.002	.0015	.001
	1440 T45	C6	480 96	.004 .001	.0055 .0015	.007	.005	.004	.0035	.0035
443	M48, T15	C6	360	.001	.0055	.002	.002	.0015	.001	.0035
	M48, T15	- 00	180	.004	.0033	.0025	.003	.002	.0035	.0033
182-FM	19140, 113	C6	350	.004	.0055	.0023	.005	.004	.0035	.0035
202/204/246	M48, T15		90	.001	.0015	.002	.0015	.001	.001	.001
302/304/316		C2	330	.004	.0055	.007	.005	.004	.0035	.0035
	M48, T15		124	.0018	.0024	.0024	.0024	.0018	.0012	.0012
Project 70+® 304/316		C2	468	.0048	.0066	.0084	.0060	.0048	.0042	.0042
302HQ-FM®	M48, T15		108	.0015	.002	.0025	.002	.0015	.0015	.001
		C2	360	.004	.005	.007	.006	.005	.0015	.001
303	M48, T15	C2	100 325	.015 .015	.002	.0024	.0025	.0018	.0015	.001
	M48, T15	L/Z	156	.0018	.0024	.0024	.0025	.0018	.0015	.0012
Project 70+® 303	19140, 113	C2	507	.0048	.0060	.0024	.0023	.0060	.0048	.0036
	M48, T15	U	102	.0015	.002	.0025	.002	.0015	.0015	.0030
303Al Modified®		C2	330	.004	.005	.007	.006	.005	.004	.003
203	M48, T15		100	.015	.002	.0024	.0025	.0018	.0015	.001
		C2	325	.015	.002	.0024	.0025	.0018	.0015	.001
321/347	M48, T15	-	96	.001	.0015	.002	.0015	.001	.001	.001
		C2	360	.004	.0055	.007	.005	.004	.035	.0035
20Cb-3® Stainless	M48, T15	C2	60	.001	.0015	.002	.001	.001	.001	.001
	M48, T15	L C2	210 54	.004	.0055 .001	.007 .0015	.005 .0015	.004	.0035	.0035
18Cr-2Ni-12Mn	19140, 115	C6	192	.001	.0055	.0015	.0015	.003	.0007	.0007
	M48, T15	- 00	48	.004	.0033	.0045	.004	.003	.002	.002
21Cr-6Ni-9Mn	11170, 110	C6	168	.004	.0055	.0045	.0013	.003	.0007	.002
	M48, T15		48	.001	.001	.0015	.0015	.001	.0007	.0007
22Cr-13Ni-5Mn		C6	168	.004	.0055	.0045	.004	.003	.002	.002

Precipitation Hardening Alloys Turning—Single Point and Box Tools

		Micro-Melt® Powder			Car	bide To	ols (inse	rts)
	Depth -		Speed To			Speed	(fpm)	
	of Cut,	Tool	Speed	Feed	Tool	Un-		Feed
Alloy	(inches)	Material	(fpm)	(ipr)	Mtl.	coated	Coated	(ipr)
			1	lution Trea		1	1 . 1	
17Cr-4Ni	.150 .025	M48, T15	80 95	.015 .007	C6 C7	300 350	450 525	.015 .007
	.023		Doub	e Aged H 1	150-M		. 525 .	
	.150 .025	M48, T15	80 95	.015 .007	C6 C7	330 350	425 525	.015 .007
	.023	113		150 H 110			. 323 1	.007
	.150 .025	M48, T15	60 75	.015 .007	C6 C7	290 325	390 425	.015 .007
	.025 1	115		.007 Aged H 102!		1 323	1 425 1	.007
	.150	M48,	60	.015	C6	265	325	.015
	.025 l	T15	l 75 Age	.007 ed H 900 H	C7 925	300	l 390 l	.007
	.150	M48,	30	.015	C6	180	225	.015
	.025	T15	45 S o	.007 Iution Treat	C7 ed	200	275	.007
Project 70+®	.150	M48,	90	.015	C6	400	520	.015
Custom 630	.025 l	T15	l 105 Doub l	.007 e Aged H 1	C7 150-M	l 450	l 595 l	.007
	.150	M48,	90	.015	C6	375	475	.015
	.025	T15	105 Aged H 1	007 150 H 110	l ∩7 0 H 1075	425	550	.007
	.150	M48,	70	.015	C6	325	425	.015
	.025 l	T15	l 85	.007 Aged H 102 !	C7 5	l 375	l 475 l	.007
	.150	M48,	70	.015	C6	300	375	.010
	.025 l	T15	85 Age	.007 ed H 900 H	C7 925	l 350	l 425 l	.005
	.150	M48,	40	.010	C6	210	275	.010
	.025 l	T15	1 55 S o	005 Iution Treat	C.7	250	310	005
Custom 450®	.150	M48,	84	.015	C6	310	400	.015
	.025 l	T15	108 Age	.007 I H 1150-H	C7 1100	350	475	.007
	.105	M48,	78	.015	C6	290	350	.015
	.025	T15	90 Age	.007 i H 1050-H	C7 1000	310	425	.007
	.150	M48,	66	.015	C6	250	325	.010
	.025 l	T15	78 Age	.007 d H 900 H	C7 925	300	l 375 l	.005
	.150	M48,	42	.010	C6	170	225	.010
	.025	T15	48	.005 Annealed	C7	200	260	.005
Custom 465®	.150	M48,	72	.015	C6	270	350	.010
Custom 455® PH 13-8 Mo*	.025 l	T15	l 84	.007 Aged	C7	325	425	.005
15Cr-5Ni	.150	M48,	48	.010	C6	190	250	.010
	.025	T15	54 S o	.005 Iution Treat	<u>C7</u> :ed	225	290	.005
Project 70+®	.150	M48,	132	.015	C6	415	540	.019
15Cr-5Ni .025	.025	T15	150	.010 Aged	C7	485	620	.009
	.150	M48,	102	.013	C6	385	490	.013
	.025	T15	126 Equalize	.008 ed & Over To	C7 empered	445	530	.006
Pyromet®	.150	M48,	84	.015	C6	280	400	.015
350 & 355	.025	T15	l 90 . A	007 ged Rc 38-4	C7 1 0	350	l 475 l	.007
	.150	M48,	72	.015	C6	270	350	.010
	.025 l	T15	l 84 A g	.007 ed Over Rc	C7 40	325	400	.005
	.150	M48,	48	.010	C6	190	250	.010
	.025	T15	54	.005	C7	225	280	.005

^{*}Registered trademark of AK Steel Corp.

Precipitation Hardening Alloys Turning—Cut-Off and Form Tools

	Tool M	aterial				ı	Feed (ip	or)		
	Micro- Melt®	Car-	Speed				Off and			
Alloy	Powder HS	bide Tools	(fpm)	1/16	1/8	1/4	Nidth (i 1/2	nches)	1½	2
Alloy	Tools	10013			-	-	1/2	ı	1 72	
17Cr-4Ni	M48, T15		60	د 0012. ا	olution 0015	.002	.002	.0016	.0013	.0011
1701-4141	14140, 1113	C6	205	.0012	.0015	.002	.002	.0016	.0013	.0011
			l		le Aged				1	
	M48, T15	C6	70 205	.0012	.0015	.002	.002	.0016 .0016	.0013	.0011 .0011
	'	00			1075 - H			.0010	.00101	.0011
	M48, T15		65	.0012	.0015	.002	.002	.0016	.0013	.0011
	l l	C6	200	.0012	.0015 Aged H	.002 1025	.002	.0016	.0013	.0011
	M48, T15		34	.0012	.0015	.002	.002	.0016	.0013	.0011
		C6	110	.0012	.0015	.002	.002	.0016	.0013	.0011
	M48, T15		25	.0012	ed H 90 .0015	וים - חים .002	.002	.0016	.0013	.0011
	11140, 110	C6	95	.0012	.0015	.002	.002	.0016	.0013	.0011
				S	olution	Treated				
Project 70+®	M48, T15	00	75	.001	.0015	.002	.0015	.001	.001	.0005
Custom 630		C6	225	.003 Doul	.003 ole Aged	.004 H 1150	.003 -M	.002	.002	.002
	M48, T15		100	.0015	.002	.0025	.002	.0015	.001	.001
		C6	250	.003	.003	.0045	.003	.002	.002	.002
	M48, T15		85	.001	1075 - H .0015	.002	.0015	.001	.001	.0005
		C6	225	.003	.003	.0045	.003	.002	.002	.002
	MAO TAE I		1 45	1 001	Aged H		L 001E	001	l 004 l	0005
	M48, T15	C6	45 150	.001	.001	.0015	.0015	.001 .002	.001	.0005 .002
	!			Ag	ed H 90	0 - H 92	5			
	M48, T15	C6	35 125	.001 .0025	.001 .0025	.0015 .004	.0015 .0025	.001 .0015	.001 .0015	.0005 .0015
		CO	125		olution		.0023	.0015	.0015	.0015
Custom 450®	M48, T15		84	.001	.0015	.002	.0015	.001	.001	.0005
		C6	240	.003	.0045	.006	.003	.0025	.0025	.0015
	 		l	١	Annea	ì	l		l l	
Custom 465® Custom 455®	M48, T15	C6	72 216	.001	.0015 .005	.002 .007	.0015 .005	.001 .004	.0007	.0005 .0035
PH 13-8 Mo*	'	00	210	.000	Age		1.005	.004	.0000	.0000
15Cr-5Ni	M48, T15	00	36	.001	.001	.0015	.0015	.001	.0005	.0005
		C6	132	.003 S	.003	.0045	.003	.002	.002	.002
Project 70+®	M48, T15		96	.0017	.0020	.0025	.0028	.0022	.0019	.0017
15Cr-5Ni	11140, 110	C6	312	.0021		.0029	.0032	.0024	.0021	.0019
	MAO TAE I			0014	Age	i	1 0005	0010	l 0040 l	0014
	M48, T15	C2	84 288	.0014	.0017	.0022	.0025	.0019 .0020	.0016 .0017	.0014 .0015
					Aged—Ro		1		1	
Pyromet®	M48, T15		54	.001	.001	.0015	.0015	.001	.001	.0005
350 & 355		C6	210	.0025 Fauali	.0025 zed & O	.003 vertemn	.003	.0025	.0025	.0015
	M48, T15		48	.001	.001	.0015	.0015	.001	.0005	.0005
	,,	C6	204	.0025	.003	.004	.003	.002	.002	.002
	MAO T1E I		30	Α و 001.	g ed—Ov .001	er Rc 40 .0015) .0015	.001	.0005	.0005
	M48, T15	C6	132	.001	.001	.0015	.0015	.001	.0005	.0005
	-			,	,,					

Contact a Carpenter representative for alloy availability. *Registered trademark of AK Steel Corp.

Cut-off Tools

Either blade-type or circular cut-off tools are used for stainless steel applications. Blade-type tools usually have sufficient bevel for side clearance, i.e., 3° minimum, but may need greater clearance for deep cuts. In addition, they should be ground to provide for top rake and front clearance. The front clearance angle is 7 to 10°; a similar angle is used for top rake, or a radius or shallow concavity may be ground instead. The end cutting edge angle may range from 5° or less to 15°, with the angle decreasing for larger-diameter material.

Carbide-tipped cut-off tools may be used. However, shock loading from interrupted cuts must be taken into consideration when selecting the carbide.

Form Tools

Form tools are usually dovetail, circular, or insert. The speeds and feeds for form tools are influenced by the width of the tool in relation to the diameter of the bar, the amount of overhang and the contour or shape of the tool. Generally, the width of the form tool should not exceed 1-1/2 times the diameter of the workpiece; otherwise, chatter may be a problem.

Dovetail form tools should be designed with a front clearance angle of 7 to 10°, and be ground with a top rake angle of 5 to 20°. Angles for circular form tools are similar, as shown in Figure 3. Higher rake angles within the 5 to 20° range may be used for roughing operations and lower rake angles for finishing. The design of the tool should incorporate sufficient side clearance or relief angles, typically 1 to 5° depending on depth of cut, to prevent rubbing and localized heat build-up, particularly during rough forming. It may also be necessary to round corners. A finish form or shave tool may be necessary to obtain the final shape, especially for deep or intricate cuts.

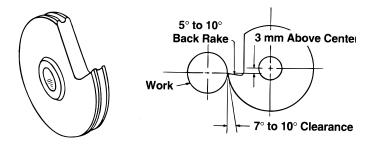
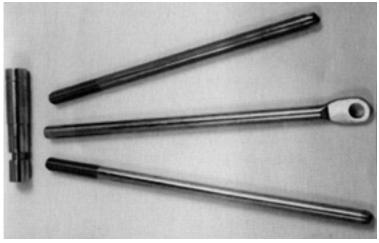



Fig. 3. Suggested geometries for circular form tools used on stainless steels.

Carbide-tipped or carbide-insert tooling may be used for forming operations. However, as with cut-off tools, shock loading from interrupted cuts must be taken into consideration.

Shaving Tools

A shaving tool may be used to obtain optimum machined surface finish or close tolerances on formed parts. Shaving tools remove metal with a tangential rather than a radial cut, with the workpiece supported by integral rollers. Usually a thin layer of metal (approximately .004–.008 in. or .1–.2 mm) is removed at relatively high speeds. The tool must have a very smooth finish on the cutting edge since the finish of the tool will influence the finish of the part. A clearance angle of about 10° is normally needed.

Cable ends and conduit cap that were machined from Carpenter's premium stainless Types 303 and 304.

Trouble-Shooting Check Chart

PROBLEM:	POSSIBLE SOLUTIONS:
Tool heats badly.	 Is tool heavy enough? Does it have enough mass to carry off generated heat? Check cutting fluid as it might be too rich in sulphur base oil and should be cut back with a coolant such as paraffin base oil.
Cutting edge breaks off.	 Tool ground with too coarse a grinding wheel. ● Not enough mechanical support due to grinding large concavity in front clearance. Use straight angular grind with minimum clearance, usually between 7° and 10°.
Chips pile on top of tool.	 Top rake angle not steep enough. Should be 5° to 20° angle. Also indicates need of "chip curler." If curler is used, it is not deep and wide enough. Stoning top rake to a fine smoothness helps chips slide off. Tool set too low.
Work cuts with taper.	 Rough turn to .003/.005" over finished size and shave, using light cut at a fast speed. ◆ Check cutting fluid to be sure mixture has enough paraffin oil to serve as coolant for dissipating heat.
Poor or rough finish.	 Check cutting tool. If ground on coarse grit wheel and not stoned, this is natural result. Cut may be too heavy. Stock may be too soft, and is "picking up."
Cannot hold close tolerance.	 Close tolerances are not readily obtainable on heavy cuts. Machine to .003/.005" over finished size and tolerance required and then take a shave or finishing cut with fairly fast speed. Have cutting fluid on thin side for cooling purposes.
Tool "rides" work.	 Tool not sharp enough. Top rake angle not steep enough, causing "bugging." Look for "play or looseness" in machine or tool. Feed too low.
Work glazes or hardens.	 Tool either dull or riding too far above center of work. The use of a solid type steady-rest will glaze or work-harden job—change to roller type steady-rest.
Tools "hog in."	 Rake angles too small. Also check side clearance. Stock may be extra dead soft. Carriage may be loose. Cutting edge of tool below center line. See sketch on page 42.
Circular form tools gall and bind on sides.	• Cut too deep for side clearance allowed. Increase angle of side clearance. If this goes beyond allowable limits of finished piece, a shaving operation will have to be added.

PROBLEM:	POSSIBLE SOLUTIONS:
Cannot take finish cut close enough for threading.	• Stock too soft or cut too heavy. Add shaving operation, taking a light fast finishing cut (.002/.008"). Experienced operators are doing this and eliminating grinding before thread cutting for Class 3 fits.
Tools burn.	 Cutting fluid may be too thin. Add more sulphur base oil.
Excessive tool wear.	Generally an indication of too rich a mixture of sulphur base oil. Add paraffin oil until excessive wear is reduced.
Tools won't hold edge.	• See No. 5 on page 33 for information on grinding and stoning of cutting edge. Following these suggestions has generally increased tool life from 10 to 60%. Several cases reported higher than this.
Tool cuts undersize after grinding.	 Look for a "bug" on cutting edge. Sometimes a small one remains after grinding. This starts building up metal right away, resulting in undersized cut. Stoning after grinding will eliminate this. Mechanical adjustment of machine may be required.
Chatter marks.	 Tool is not being held tight in fixture, causing vibration. Tool is not properly set with center line of work. Excessive clearance angles tend to cause chatter. Too heavy a cut or too light a machine. ◆ A roller steady-rest will help to prevent chattering. ◆ Check for looseness in tool holder. Tool may have too much overhang. Tool too wide.
Tool heats excessively and finish is rough.	 Not enough clearance angle. Tool rubbing against work, creating friction heat. This requires more pressure to feed tool and the rubbing causes poor finish.
Double chips.	 This occurs when tool has chip groove which is carried through the front of tool or cutter. This can be overcome by proper regrinding.

DRILLING

General Guidelines

In any drilling operation, the following factors are important:

- 1. Work must be kept clean and chips removed frequently, since dirt and chips act as an abrasive to dull the drill.
- 2. Drills must be carefully selected and correctly ground.
- 3. Drills must be properly aligned and the work firmly supported.
- 4. A stream of cutting fluid must be properly directed at the hole.
- 5. Drills should be chucked for shortest drilling length to avoid whipping or flexing, which may break drills or cause inaccurate work.
- 6. Drill coatings, such as TiN, TiAlN, & TiCN, should extend the wear resistance.

When working with stainless steels, particularly the austenitic alloys, it is advisable to use a sharp three-cornered punch rather than prick punch to avoid work hardening the material at the mark. Drilling templates or guides may also be useful.

To relieve chip packing and congestion, drills must occasionally be backed out. The general rule for HSS drills is to drill to a depth of three to four times the diameter of the drill for the first bite, one or two diameters for the second bite and around one diameter for each of the subsequent bites. This is not a good technique for carbide drills. Carbide drills have a tendency to break on a peck operation. A groove ground parallel to the cutting edge in the flute for chip clearance will allow deeper holes to be drilled per bite, particularly with larger-size drills. The groove breaks up the chip for easier removal.

Drills should not be allowed to dwell during cutting, particularly with austenitic stainless steels. Allowing the drill to dwell or ride glazes the bottom of the hole, making restarting difficult. Therefore, when relieving chip congestion, drills must be backed out quickly and reinserted at full speed to avoid glazing.

Drills with a non-cutting land at the point should be avoided. This non-cutting land only pushes material away from the center and will work harden the material. This action can cause hard spots in the center of the material and lead to premature drill failure. Use a split point or a manufacturer's variation of a split point to maintain a cutting action.

Drilling Parameters

Drill feed is an important factor in determining the rate of production. Because proper feed increases drill life and production between grinds, it should be carefully selected for each job. The drilling tables on pages 48 and 49 list feeds and speeds for various size drills.

Grinding of Drills

It is especially important to grind drills correctly. Figure 4 shows suggested geometries for high-speed steel drills to be used with stainless steels. The point angle should be 130° to 140°, although a smaller angle may be used for easier-to-machine alloys. A larger angle produces a more easily removed chip when drilling hard or tough alloys. This wider angle also promotes a straighter hole. The use of a split point drill tip reduces the amount of cold work in the material at the point, thus extending drill life. The lip clearance should be between 9° and 15°, and the two cutting edges must be equal in length and angle. The web thickness at the point should be about 12.5% of the drill diameter, or less. A thinner web reduces feed pressure, heat generation, and glazing or work-hardening of the bottom of the hole. Grinding fixtures should be used when regrinding drills. For best results in grinding high-speed steel drills, medium-grain, soft-grade dry wheels should be used. Blueing or burning is to be avoided, as is quenching. Quenching will often check or crack the drill if it has been overheated.

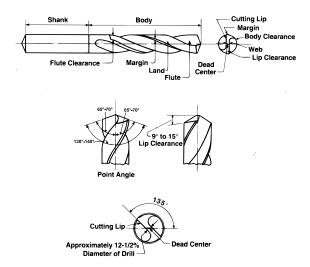


Fig. 4. Suggested geometries for drills used on stainless steels.

Small-Diameter Drills

Procedures used with large or normal-size drills will not always prove successful for small-diameter drills, i.e., 0.070 in. (1.8 mm) and under. These very small drills are subject to deflection, both torsional and longitudinal, due to their length in relation to their diameter. In addition, the web on small drills is proportionally heavier than on large drills. This thicker web adds strength needed for the required work pressure, but decreases chip clearance. Therefore, the depth of each bite may have to be reduced. All small-diameter drilling is actually deep-hole drilling; therefore, careful resharpening, frequent and adequate chip removal and feeds and speeds properly adjusted to the strength and load-carrying capacity of the drill are very important. Good small-hole drilling is dependent on feeds that produce chips instead of "powder."

Stainless Steels Drilling

The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

			Feed (inches per revolution)							
Alloy	High Speed	Speed		No	minal	Hole D	iamet	er (inch	nes)	
(Annealed Condition)	Tools	(fpm)	1/16	1/8	1/4	1/2	3/4	1	1½	2
410	M42	60-70	.001	.003	.006	.010	.013	.016	.021	.025
	C2 Coated	205	.0005	.001	.006	.0085	.0111	.0128	.0158	.0158
416	M42	95-110	.001	.003	.006	.010	.014	.017	.021	.025
	C2 Coated	275	.001	.003	.006	.0085	.0119	.0136	.0158	.0158
No. 5 BQ	M42	95-110	.001	.003	.006	.010	.014	.017	.021	.025
	C2 Coated	240	.001	.003	.006	.0085	.0119	.0136	.0158	.0158
Project 70+® 416	M42	120-144	.0014	.0042	.0066	.012	.0155	.019	.024	.028
	C2 Coated	290	.001	.003	.006	.0085	.0119	.0136	.0158	.0158
No. 5-F	M42	110-140	.001	.003	.006	.010	.014	.017	.021	.025
	C2 Coated	295	.001	.003	.006	.0085	.0119	.0136	.0158	.0158
420	M42	55-65	.001	.003	.006	.010	.013	.016	.021	.025
	C2 Coated	205	.0005	.003	.006	.0085	.0111	.0128	.0158	.0158
420F	M42	65-75	.001	.003	.006	.010	.014	.017	.021	.025
	C2 Coated	280	.0005	.003	.006	.0085	.0119	.0136	.0158	.0158
431	M42	50-60	.001	.003	.005	.007	.010	.012	.015	.018
	C2 Coated	150	.001	.003	.005	.006	.0085	.0096	.0113	.0113
440A/440B	M42	45-55	.001	.003	.006	.010	.014	.017	.021	.025
	C2 Coated	140	.0005	.002	.004	.006	.0077	.0088	.0098	.0098
440C	M42	40-50	.001	.003	.005	.007	.009	.011	.014	.018
	C2 Coated	135	.0005	.002	.004	.006	.0077	.0088	.0098	.0098
430	M42	60-70	.001	.002	.004	.007	.010	.012	.015	.018
	C2 Coated	160	.001	.002	.004	.006	.0085	.0096	.0113	.0113
430F/430FR	M42	100-150	.001	.003	.006	.010	.014	.017	.021	.025
	C2 Coated	310	.001	.003	.006	.0085	.0119	.0136	.0158	.0158
443	M42	50-65	.001	.002	.004	.007	.010	.012	.015	.018
	C2 Coated	150	.001	.003	.005	.006	.0085	.0096	.0113	.0113
302/304/316	M42	50-60	.001	.002	.004	.007	.010	.012	.015	.018
	C2 Coated	140	.0005	.002	.004	.006	.0085	.0096	.0113	.0113
Project 70+® 304/316	M42	78-98	.0012	.0024	.0048	.0084	.012	.0204	.0252	.030
Project 70+ 304L/316L	C2 Coated	180	.0005	.002	.004	.006	.0085	.0096	.0113	.0113
302HQ-FM®	M42	70-90	.001	.003	.006	.010	.014	.012	.015	.018
	C2 Coated	200	.0005	.002	.004	.006	.0085	.0096	.0113	.0113
303	M42	120	.001	.003	.006	.010	.014	.017	.021	.025
	C2 Coated	240	.0008	.003	.006	.0085	.0119	.0136	.0158	.0158
Project 70+® 303	M42	91-130	.0012	.0036	.0072	.012	.0168	.0204	.0252	.030
,	C2 Coated	240	.001	.003	.006	.0085	.0119	.0136	.0158	.0158
303Al Modified®	M42	65-90	.001	.003	.006	.010	.014	.017	.021	.025
	C2 Coated	200	.001	.003	.006	.0085	.0119	.0136	.0158	.0158
203	M42	120	.001	.003	.006	.010	.014	.017	.021	.025
· -	C2 Coated	240	.0008	.003	.006	.0085	.0119	.0136	.0158	.0158
321/347	M42	50-60	.001	.002	.004	.007	.010	.012	.015	.018
•	C2 Coated	130	.001	.002	.004	.006	.0085	.0096	.0113	.0113
20Cb-3® Stainless	M42	45-55	.001	.003	.006	.010	.014	.017	.021	.025
	C2 Coated	140	.0005	.002	.004	.006	.0077	.0088	.0098	.0098
18Cr-2Ni-12Mn	M42	45-55	.001	.002	.004	.007	.010	.012	.015	.018
· · · · · · · · · · · · · · · ·	C2 Coated	140	.0005	.002	.004	.006	.0077	.0088	.0098	.0098
21Cr-6Ni-9Mn	M42	50-60	.0003	.002	.004	.007	.010	.012	.015	.018
	C2 Coated	155	.0005	.002	.004	.006	.0077	.0088	.0098	.0098
22Cr-13Ni-5Mn	M42	45-50	.0003	.002	.004	.007	.010	.012	.015	.018
	C2 Coated	150	.0005	.002	.004	.007	.0077	.0088	.0098	.0098
	oz coaleu	130	.0003	.002	.004	.000	.0077	.0000	.0000	.0030

Precipitation Hardening Alloys Drilling

			Feed (inches per revolution)							
	High			No	minal	Hole D	iamet	er (inc	hes)	
Alloy	Speed Tools		1/8	1/16	1/4	1/2	3/4	1	11/2	2
17Cr-4Ni	M42	l 50	l .001	.002			l.008 M	1.010	1.012	1.015
	M42	50			.004	.007	800.	1.010	.012	1.015
	M42	l 45		.002		.007	1.008	1.010	1.012	l.015
	M42	40	.001	.002	.004		800.	1.010	1.012	.015
	M42	20	.001	.002	.004	.007	.008	.010	.012	.015
Project 70+®	M42	l 55	1.001		lution T		1.008	1.010	1.012	1.015
Custom 630	IVI42	1 55	1 .00 1			-H 1150		1.010	1.012	1.015
	M42	l 65	1.001 Ag	.002 jed—H 1	.004 075 - H	1.007 1100 - H	1.009 I 1150	1.011	1.013	1.016
	M42	50	l –		.004 ged—H		800.	.010	.012	.015
	M42	l 40	I —	.002	.004		1.008	1.009	1.011	1.012
	M42	30		.001	.002	.003	.004	.004	.004	.004
Custom 450®	M42	l 50	.001	.002		.007	1.008	1.010	1.012	1.015
	M42	l 45	l .001	1.002	d—1100 .004 d—1000	1.007	1.008	1.010	1.012	1.015
	M42	35	l —	.002	.004 ed—90 0	.007	800.	1.010	1.012	1.015
	M42	25	-	.001	.002	.003	.004	.004	.004	.004
Custom 465®					Anneal	ed				
Custom 455® PH 13-8 Mo*	M42		.001		Age	i	800.	.010	.012	.015
15Cr-5Ni	M42	35		.001	.002 lution T	.003	.004	.004	.004	.004
Project 70+® 15Cr-5Ni	M42	l 70	.0014	.0024		.0074	1.0084	1.0104	1.0124	1.0154
15CI-5IVI	M42	60	l —	.0022	.0042	.0072	.0082	.0102	.0122	.0152
				Equalize	d & Ov	ertempe	red			
Pyromet® 350 & 355	M42	50	.001		.004 ed—Rc 3		800.	.010	.012	.015
	M42	35	I —		.004 d—Over		800.	.009	.011	.012
	M42	20		.001	2	3	.004	.004	.004	.004

Contact a Carpenter representative for alloy availability.

Special Drills

As noted previously, drills should be chucked for shortest drilling length. However, some jobs require exceptionally deep drilled holes, where the depth of the hole is eight to ten times the diameter. Therefore, short chucking is impossible. In such cases, special drills

^{*}Registered trademark of AK Steel Corp.

known as crankshaft hole drills may be useful. These drills were originally designed to drill oil holes in forged crankshafts and connecting rods, but have found widespread use in drilling deep holes. They are made with a very heavy web and a higher spiral or helix angle to aid in chip removal. They usually have a notched point-type of web thinning which is done on a sharp-cornered hard grinding wheel.

A cotter pin drill should be used to drill small cross holes in the heads of bolts, screws, pins, etc. Like a crankshaft hole drill, it is a more heavily constructed drill which withstands abnormal strains and has a faster or higher helix angle to aid in chip removal.

In addition to deep hole gun drilling, these thermometer thermocouple wells were turned, threaded, tapped, reamed and milled for use in the chemical and petroleum industries.

Trouble-Shooting Check Chart

Free-hand and poor grinding cause 90% of all drill troubles. Good grinding fixtures, wheels and careful grinding

PROBLEM:	POSSIBLE SOLUTIONS:
Wear at point.	• Increase point angle.
Broken drills.	 Chuck drills as short as possible to stop flexing or weaving. Dull drills break. Not enough lip clearance. Check speed of drill. Too slow or too fast will break them. See table on pages 48 and 49. Check clamp and drill fixture for rigidity, tightness and backlash. Be sure chips are not packing.
Splitting up the center.	Drills without sufficient lip clearance do not have enough cutting edge—so feed pressure builds up and splits drill up the center. If lip clearance is correct, reduce the feed.
Drilling requires abnormal feed pressure.	
	• The center web increases in thickness toward the shank. As drills become shorted from use or repeated regrinding, the web becomes wider and must be thinned. By point-thinning back to ¹/8 (or 12¹/2%) of drill diameter, this trouble is eliminated. Point-thinning must be done equally on both sides of the web or web will be off center and drill oversized holes. Don't thin back too far as this weakens the point. ● To avoid the problem of web-thinning, several manufacturers supply drills with a parallel web.
Drills breaking on "through" holes.	 Check drill press and fixtures for rigidity. "Backlash" or "spring" in press or work usually the cause. Job may require backing plate.
Drills will not enter work.	• If web is too wide, it will glaze work. Drills are designed to have a web thickness to 12½% (⅙) of their diameter.
Poor cutting results on certain materials.	• For stainless steel, the suggested point is 140° included angle. Therefore, first check point angle. The hardness or softness of material determines angle. As an example, drill manufacturers recommend a 150° point included angle for high manganese steels and a 118° included angle for SAE 1020. Larger point angles produce a thinner chip which is removed more easily.

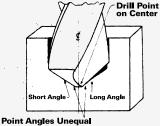
Trouble-Shooting Check Chart

PROBLEM:	POSSIBLE SOLUTIONS:					
Drill wears un- dersize quickly.	 Check volume of cutting fluid. Is it flooding drill? This condition is either pool lubrication or cutting fluid is too rich in sulphurized base oil and should be cut back with suitable blending oil. Undersized drill jig bushing will wear drill. 					
Poor cutting with a sharp drill.	Not enough clearance back of the cutting edge. Heel Drill Ground with Proper Clearance. Note: Heel is LowerThan Cutting Edge					
Chipping of "margin."	 Check drill jig bushing for size; usually an oversized drill jig bushing causes chipping. 					
Breakage of drill tang.	 Generally this trouble comes from worn chuck, or nicks on tang, as well as burrs or dirt. Check these items and be sure shank fits into sleeve or taper snugly. Sleeves may be in poor condition. 					
Drill "digs in."	• Check bearings and spindles of drill press. Sloppy fits are generators of this trouble. This trouble prevails mostly on small drills, so if press is all right, try grinding a secondary angle of 7° to 9°, which will back up the cutting edge and stop hogging or "digging in."					
Rough surface in finished hole.	 Several factors lead to this condition, any one of which can be the cause. Generally it is due to too fast a feed. Try a higher speed and slower feed. If this does not correct the trouble, check the drill for proper grinding. Check cutting fluid for volume. Be sure enough reaches the drill. Poor chip elimination may be the cause. Check entire setup, including machine. 					
Drill breakage on outer corners of cutting edges.	 Assuming that cutting fluid is of correct mixture and in sufficient volume, this is then caused by too high a speed. Reduce speed until trouble disappears. Flutes clogged with chips. 					

PROBLEM:

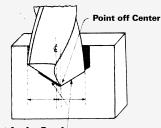
POSSIBLE SOLUTIONS:

Drill chipping or breaking down on cutting edges or lips.


• This can be an indication of too much lip clearance for that particular job. Therefore, check this first. • The only other cause comes from too much feed, in which case reduce feed until trouble is eliminated.

Change in chip formation while drilling.

• If job has been running satisfactorily, this is an indication the condition of drill has changed. Look for dull or chipped drill.

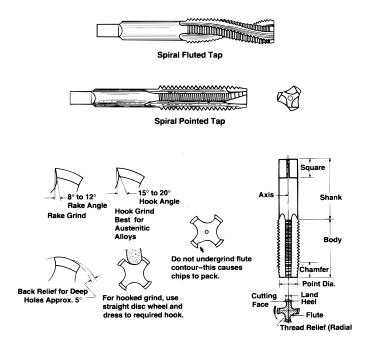

One lip carrrying most of cutting load or drill producing large and small chips.

 Regrind drill to correct the unequal angles of the cutting lips. Both cutting edges must have identically the same angle with center line of drill. The 140° included angle may vary slightly but the variation must be alike on both cut-

Hole drills oversize.

• Check machine spindle for excess wear, and jig bushing for sloppy fit. If these are O.K., the trouble lies in the drill. • Check lip length of drill. Oversize holes are caused if the lips are not equal in length. This condition throws the point "off center." Watch the drill and it will operate like a wheel with the hub off center. This also causes Point Angles Equal press strains and noticeable spindle wobble.

Drill squeak. Drill groaning.


- Friction causes squeaking, usually due to the hole being crooked; drill dull and not cutting; or insufficient lubrication.
- Overloading causes groaning, usually due to overfeeding; poor chip clearance, allowing chips to get under cutting edge. Also land on the flutes toward the cutting edge may be worn and tapered.

TAPPING

Types of Holes and Taps

The initial hole bears an important role in securing a finished tapped hole of the desired quality. The tap is simply a cutting tool and is not intended for correcting a small or poorly drilled hole. Holes having a work-hardened surface due to improper drilling or reaming technique will also cause problems during tapping.

Basically there are two types of holes prepared for tapping: the open or through hole and the blind hole. For open or through holes, taps of either the spiral-fluted or the straight-flute spiral-pointed type can be used, as shown in Figure 5. They are particularly desirable when tapping the softer and non-free-machining alloys because they provide adequate chip relief. The spiral-pointed tap cuts with a shearing motion. It has the least amount of resistance to the thrust, and the entering angle deflects the chips so that they curl out ahead of the tap. This prevents packing in the flutes, a frequent cause of tap breakage. When backing out a spiral-pointed tap, there is less danger of roughing the threads in the tapped part. The spiral-pointed tap should not be used in blind or closed holes unless there is sufficient untapped depth to accommodate the chips. To tap blind holes, special spiral-pointed bottoming taps are available. However, spiral-fluted taps with a spiral of the same hand as the thread are suggested, since they are designed to draw chips out of the hole.

Fig. 5. Typical taps used for stainless steels, with suggested geometries and grinding techniques.

The "class of fit" required for the threads will also be a factor in tap selection. The following three classes are standard:

Class 1 - Loose fit largest tolerance range

 ${f Class~2}$ - General purpose fit moderate tolerance range

 ${f Class~3}$ - High-accuracy fit tight tolerance range

The class of fit determines whether a cut thread tap, ground thread tap or a precision ground thread tap is necessary. A cut thread tap is used for Class 1 fits; ground thread taps are used for Class 2 fits; and precision ground thread taps are used for Class 3 fits.

Chip removal is also important for close tolerance tapping. When the wrong tap is selected, chips crowd into the flutes; therefore, the flutes should not be too shallow or the lands too wide. Often the

Stainless Steels Tapping

The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

Alloy (Annealed Condition)	High Speed Tools	Speed (fpm)
410	M7, M10	15-40
416	M7, M10	20-45
No. 5 BQ	M7, M10	20-45
Project 70+® 416	M7, M10	25-50
No. 5-F	M7, M10	25-50
420	M7, M10	15-40
420F	M7, M10	20-45
431	M7, M10	12-25
440A/440B	M7, M10	10-20
440C	M7, M10 Nitrided	8-18
440F	M7, M10	15-40
430	M7, M10	15-40
430F/430FR	M7, M10	20-45
443	M7, M10	15-40
302/304/316	M7, M10	12-25
Project 70+® 304/316 Project 70+ 304L/316L	M2, M42	19-50
302HQ-FM®	M7, M10	20-45
303	M7, M10	20-35
Project 70+® 303	M2, M42	25-56
303Al Modified®	M7, M10	20-45
203	M7, M10	20-35
321/347	M7, M10	12-25
20Cb-3® Stainless	M7, M10	12-25
18Cr-2Ni-12Mn	M7, M10	12-25
21Cr-6Ni-9Mn	M7, M10	12-25
22Cr-13Ni-5Mn	M7, M10	12-25

Contact a Carpenter representative for alloy availability.

power required to break packed chips is more than that required to cut the thread and can result in the tap breaking.

Consideration must also be given to the number of flutes on the tap. With small holes, a tap with four flutes is more likely to produce chip congestion than one with fewer flutes. Therefore, general practice is to use a tap with fewer flutes as the size of the hole decreases. Specifically, two-fluted taps may be used for holes up to about 0.125 in. (3 mm) in diameter; three-fluted taps for holes between 0.125 in. (3 mm) and 0.500 in. (13 mm); and four-fluted taps for larger holes.

Precipitation Hardening Alloys Tapping

Alloy	High Speed Tools	Speed (fpm)
	Solution Treated	
17Cr-4Ni	M7, M10 Double Aged—H 1150M	17-28
I	M7. M10	18-30
I	Aged—H 1075 - H 1150 M7, M10	13-23
I	Aged—H 1025 M7, M10	9-18
·	Aged—H 900 - H 925 M7, M10 Nitrided	5-13
	Solution Treated	0 10
Project 70+®	M7. M10	15-28
Custom 630	Double Aged—H 1150M	13-20
	M7, M10	17-32
	Aged—H 1075 - H 1150	
I	M7. M10	15-28
	Aged—H 1025	
I	M7, M10 Aged—H 900 - H 925	12-22
	M7, M10 Nitrided	7-17
	Solution Treated	1
Custom 450®	M7, M10	12-25
'	Aged—H 1100 - H 1150	1
	M7. M10 Aged—H 1000 - H 1050	15-20
	M7, M10	10-20
	Aged—H 900 - H 950	•
	M7, M10 Nitrided	5-15
Custom 465®	Annealed	
Custom 455 PH 13-8 Mo*	M7, M10 Aged	12-25
15Cr-5Ni	M7, M10 Nitrided	5-15
	Solution Treated	L
Project 70+®	M7, M10	25
15Cr-5Ni	Aged	•
	M7, M10	20
	Equalized & Overtempered	
Pyromet®	M7. M10	12-25
350 & 355	Aged—Rc 38-40	
	M7, M10 Nitrided	10-20
1	Aged—Over Rc 40 M7, M10 Nitrided	5-15

Contact a Carpenter representative for alloy availability.

Percent of Thread

The percentage of full thread to be cut must be determined initially, since this will determine the size of the drilled hole. The percent of thread should be governed by the diameter and pitch of tap, depth of hole to be tapped, and toughness or hardness of material. With tougher or harder materials, tap life is increased when a lower percentage of

^{*}Registered trademark of AK Steel Corp.

thread is cut. Under such conditions it is economical to tap twice – first, roughing out the hole with an undersized tap, and then finishing to size with a second tap.

Normal commercial practice for percent of thread is between 62% and 75%. A 100% thread is only 5% stronger than a 75% thread, but requires three times as much power to tap. A general rule is to use a 100% thread where the depth of tapped hole is one-half or less than the diameter of tap. A 75% thread is used where depth of tapped hole is up to two times the tap diameter. Where depth of tapped hole exceeds twice the diameter of the tap, it is economical to use only 50% thread.

The following two formulas show tap drill size and the percentage of thread a given drill will produce. It is sometimes an advantage to change from standard decimal drill sizes to millimeter sizes. An example is the common No. 8-32 thread size, where as close to a 75% thread as possible is required. The No. 29 (0.1360 in.) drill provides only a 69% thread, while the No. 30 (0.1285 in.) drill (next size) provides an 87% thread. However, a 3.40 millimeter (0.1339 in.) drill results in a 74% thread. See the tables on pages 151-158 for more information.

No. 1-for obtaining tap drill size:

Example — for ¼" x 20 thread:

$$.250 - \frac{.0130" \times 75}{20} = .2013 \text{ or number 7 drill}$$

No. 2-for obtaining percentage of thread a given drill will produce:

$$\frac{\text{(Outside dia. - drill size)} \times \text{number threads per}}{.0130} = \% \text{ of full thread}$$

$$\text{Example — for } \% \text{"} \times 20 \text{ thread:}$$

$$\frac{\text{(.250 - .201)} \times 20}{.0130} = 75.4\% \text{ thread}$$

Grinding of Taps

The geometries shown in Figure 5 on page 56 for high-speed steel taps are for average applications; for some types of tapping, it may be necessary to alter the cutting face design or angle. Occasionally, due to a combination of variables on certain types of work, the hook grind, which normally is best, will not give satisfactory results. In such cases, an interrupted-thread tap with an uneven number of flutes has solved the problem, since it requires 40% to 50% less power than regular taps (particularly where the tapping machine lacks power). The problem of roughness on the back face of the thread can sometimes be overcome by using a negative grind on the heel of the tap. This prevents tearing of the threads when backing out the tap. Roughness may also be caused by insufficient rake (hook) angle.

In some cases, sharpening may mean only regrinding the chamfered portion or point of the tap. While in many cases this is done by hand, it is not recommended, as an uneven grind often results, causing all the teeth on one or two lands to carry the full load. This places an excessive strain on the tap, requiring greater power for operation and contributing to tap breakage. Another problem with unevenly ground taps is their tendency to cut oversize. The following angles are generally used for grinding the chamfer on taps:

Taper chamfer taps 4° to 5° or 8 to 10 threadsPlug chamfer taps 9° to 10° or 3-1/2 to 4-1/2 threadsBottoming chamfer taps 30° to 35° or 1-1/2 to 2 threads

Trouble-Shooting Check Chart

PROBLEM:	POSSIBLE SOLUTIONS:
Loose fits won't meet toler- ance.	● Two factors cause this trouble. First, oversized drill holes. Was drill selected from an old "Standard Table"? These tables have errors, particulary on fine pitches. Check drill size with formulas on page 59 ● Second, are you using a cut thread tap when a ground thread tap is needed? Remember, a cut thread tap seldom is suitable for anything but Class 1 fit. Commercial ground taps cut Class 2 fits. Precision ground taps cut Class 3 fits. Be sure you are using the right type of tap for the job.
Tapped holes not consis- tently accurate.	● Usually due to tap holder taking slightly different angle each time. If you are using "floating" holder, check how much it wobbles. Often changing to an accurate, rigid holder overcomes this trouble. ● Check flutes; if shallow, chips will pack causing tap to cut oversize. ● Wrong grid on chamfer can also cause inaccurate holes. ● Was hole drilled accurately to size and roundness?
Tap overloading caused by pick-up.	• Loading or pick-up on tap surfaces causes most tap breakage. As soon as this is observed, it should be corrected. To let it go means the pick-up will finally be so great that tap will weld in hole and power of machine will break it. Check lubrication. Other causes of loading are lands too wide, chips packing in flutes, or dull tap.
Roughness in threads.	● If all other factors and variables have been carefully checked, try a back relief grind on the heel of the tap. This overcomes tap tearing threads when backing out. ● Insufficient hook angle can also cause roughness in threads.
Broken teeth.	 Tap may be too hard (over Rockwell C-63) for type of material being cut. Grind broken teeth entirely away and tap will be serviceable.
Loading on stringy soft metals.	 This can usually be overcome by polishing the tap after grinding. The better the tap is polished, the less tendency for loading. Are flutes of tap undercut from regrinding? (See sketch on page 56.)
Flutes require regrinding.	 See sketches on page 56 for correct method and grinding wheel shape.
Poor threads and high tap breakage.	• Chamfer must be ground uniformly on all flutes using the proper angle. (See page 60.)

PROBLEM: POSSIBLE SOLUTIONS: High power con-• Chamfer ground even but point diameter too small, throwsumption and quick ing all the load of cutting on too small a portion of the chamfer. dulling Chamfer must be ground uniformly on all flutes using the proper of tap. angle. (See page 59.) • Check hardness of tap—may not be hard enough (under Rockwell C-59) for type of material being cut. • Generally an indication of improperly ground or dull tap. Tap slows up. More • Check hole diameter. Drills may have worn enough to be power required. cutting undersized. • Check to see if axis of hole and tap are parallel. • Check for chips packing in flute. This can develop if flutes are shallow or lands too wide. Chips can be controlled perfectly, and are, in well designed and correctly ground taps. Power required to break chip packing often more than required to tap. On deep holes this will break taps. • This is usually caused when tap cuts oversized hole, leaving Tap cuts when backno support to tap when backing out, thereby permitting it to cut. ing out. • A "floating" tap holder or wobbly spindle contribute to this condition. • Also check back relief. (See sketch on page 56.) • This invariably is due to tapping speed being too high. Tap runs hot; Check the chart shown on pages 57 and 58. dulls too fast. Usually a sign of tapping speed being too low. Check charts Tap drags on pages 57 and 58. badly. • General information is on page 110. As added precaution Cutting for tapping, check to make sure cutting fluid is flooding the tap fluids. constantly while it is in the hole. Be sure pressure of cutting fluid is strong enough to wash chips away. • Generally, tapping speeds are not fast enough to heat the tap. Therefore, coolants are not necessary. It is more important to use a good cutting fluid that will prevent wear and friction on the tap. It also reduces power required to cut. • Use the next size larger tap drill.

Threads

swell.

THREADING

Die Threading

Types of Chasers and Geometries

Thread chasers for self-opening die heads are made of high-speed steel. The standard commercial chasers generally have a satisfactory life when they are kept sharp and correctly ground for the materials cut.

Figure 6 shows suggested geometries for the four main types of threadcutting tools. The most generally used chaser for close-tolerance threads is the tangent-type. It is particularly adaptable for heavy-duty jobs, such as producing long, coarse threads. The tangent-type chaser maintains thread size better on heavy-duty work and provides good life between grinds. Whenever possible a 20° throat angle should be used. However, where the threads do not run into a shoulder, a 15° throat is desirable.

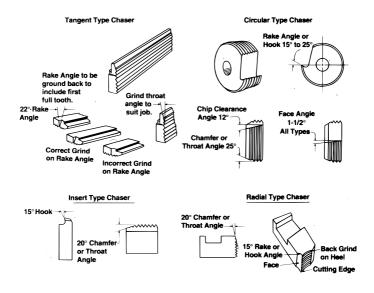


Fig. 6. Typical thread chasers used for stainless steels, with suggested geometries.

The circular-type is considered to be the universal thread chaser, as it is adaptable to all types of threads and will work equally well on tubing. This type of chaser should generally have a 25° throat angle.

The insert type of chaser is widely used. It produces good threads on non-free-machining alloys at a low cost. A 20° throat angle is usually suitable for this type of chaser.

The radial-type of chaser will produce very smooth threads, since it is ground to follow the shape or contour of the threaded piece. On screw machine jobs, where extremely fine threads are required for stainless steel parts, this type of chaser has been used successfully. Radial chasers typically have a 20° throat angle.

The throat angle or chamfer will vary slightly from the typical figure given for each of the chasers described, according to the type of thread being cut and the grade of stainless steel machined. In general, it is advisable to use a 1-1/2 to 3 thread chamfer or lead on the throat. This will usually produce a smooth thread with a fine finish and increase chaser life between grinds. The advantage of using a long throat angle is that each tooth makes a smaller cut and, consequently, produces cleaner threads. As an example, in one particular case a 45° throat angle produced a chip approximately 0.018 in. (0.46 mm) thick, while a 15° throat angle produced a chip only 0.0065 in. (0.17 mm) thick.

When threading close to a shoulder where a long throat angle cannot be used, it may be necessary to grind only a 1/2 or 1 thread chamfer on the chaser. If this short throat angle produces a rough thread, a smooth finish can be obtained by running the chaser over the workpiece a second time, or the thread can be cut in two operations by first taking a rough cut and then finishing with a second cut.

Stainless Steels Threading, Die

The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

	High Speed Tools					
Alloy (Annealed Condition)	Tool	Speed (fpm)				
	Material	7 or less, tpi	8 to 15, tpi	16 to 24, tpi	25 and up, tpi	
410	M7, M10	5-15	10-25	20-35	25-40	
416	M7, M10	10-20	15-30	25-40	35-45	
No. 5 BQ	M7, M10	10-20	15-30	25-40	35-45	
Project 70+® 416	M7, M10	15-25	25-35	35-45	40-50	
No. 5-F	M7, M10	15-28	25-38	35-48	40-53	
420	M7, M10	5-15	10-25	20-35	25-40	
420F	M7, M10	10-20	20-30	30-40	40-50	
431	M7, M10	5-15	10-20	20-30	25-35	
440A/440B	T15, M42	5-12	8-15	10-20	15-25	
440C	T15, M42	5-12	8-15	10-20	15-25	
440F	T15, M42	8-15	10-20	15-25	25-30	
430	M7, M10	15-20	20-30	35-45	40-50	
430F/430FR	M7, M10	15-25	30-40	40-50	50-60	
443	M7, M10	5-15	10-20	15-25	20-30	
302/304/316	M7, M10	8-15	10-20	15-25	25-30	
Project 70+® 304/316	M42	11-13	16-29	26-39	39-46	
Project 70+8 304L/316L						
302HQ-FM®	M7, M10	8-15	13-24	22-32	32-38	
303	M7, M10	8-13	14-24	23-30	30-40	
Project 70+® 303	M42	13-20	20-33	33-46	46-52	
303Al Modified®	M7, M10	8-15	13-24	22-32	32-38	
203	M7, M10	8-13	14-24	23-30	30-40	
321/347	M7, M10	8-15	10-20	15-25	25-30	
20Cb-3® Stainless	T15, M42	4-8	6-10	8-12	10-15	
18Cr-2Ni-12Mn	T15, M42	4-8	6-10	8-12	10-15	
21Cr-6Ni-9Mn	T15, M42	4-8	6-10	8-12	10-15	
22Cr-13Ni-5Mn	T15, M42	4-8	6-10	8-12	10-15	

Contact a Carpenter representative for alloy availability.

Die-Threading Parameters and Cutting Fluid

Suggestions for cutting threads are found in the threading tables on this and the following page. Regardless of the type of chaser being used, speeds will vary somewhat with the type of thread being cut. Acme threads are usually cut at somewhat slower speeds. Where extremely fine threads are required, it might be desirable to decrease speeds to 5 to 15 ft/min. (1.5 to 4.5 m/min.).

Precipitation Hardening Alloys Threading, Die

	High Speed Tools					
Alloy	Tool Material	Speed (fpm)				
		7 or less, tpi	8 to 15, tpi	16 to 24, tpi	25 and up, tpi	
Project 70+®	5	Solution Treated				
Custom 630	M2, M7, M10	7-13	10-18	12-25	18-30	
	Aged					
	T15, M42	5-10	8-12	10-15	12-18	
17Cr-4Ni	Solution Treated					
Custom 450®	M2, M7, M10	5-12	8-15	10-22	15-27	
Custom 465® Custom 455®	Aged					
PH 13-8 Mo*	T15, M42	4-8	6-10	8-12	10-15	
15Cr-5Ni	1 13, 1442	4-0	0-10	0-12	10-15	
Pyromet® 350 & 355						
	Solution Treated					
Project 70+® 15Cr-5Ni	M2, M7	5-12	8-15	10-20	25-30	
	Aged					

Contact a Carpenter representative for alloy availability.

Percent of Thread

As with tapping, the percent of thread being cut has an effect on production rate and cost. Cutting threads with the maximum major diameter and/or minimum pitch diameter allowed for the class thread involved means more metal must be removed. This decreases tool life and does not necessarily produce a stronger thread. The blank should be turned to leave the minimum allowable stock.

^{*}Registered trademark of AK Steel Corp.

Thread Rolling

Thread rolling can be done on automatic screw machines and turret lathes. However, the equipment must have sufficient power and rigidity for stainless steels. As discussed previously, stainless steels have high strength and work-hardening rates; therefore, substantial pressure is required to form the threads. These characteristics of stainless steels may also limit the amount of thread that can be formed. In addition, care must be taken to avoid work-hardening the surface prior to thread rolling. Despite these cautions, however, thread rolling offers certain advantages. The threads produced are stronger and tougher than cut threads and can be more accurate in size. Generally, the non-free-machining alloys will produce smoother and cleaner threads than the free-machining alloys.

Carpenter's premium machining stainless has improved thread rolling operations through increased dimensional accuracy and reduced hard spots.

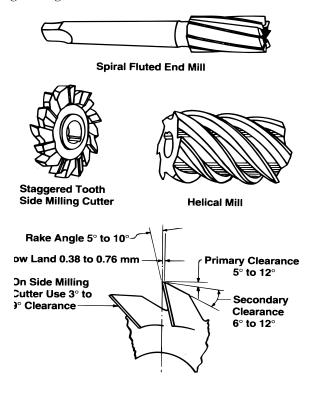
One of the many advantages of the austenitic Project 70^{+0} grades, Type 303, Type 304, and Type 316, is the reduced work hardening rate. This has reduced the effort to form threads and has increased thread rolling life.

Trouble-Shooting Check Chart

 Sharp chasers cut better threads. Don't run your chaser too long. It costs less to grind them more often.
 A die head clogged with chips or having weak springs will result in pool threads and possible breakage of chasers.
 You will avoid trouble if the throat angles in the set are ground exactly alike. Chasers with short chamfer or throat angles tend to chip or break. Short chamfers require slower cutting speeds and the chasers will have shorter life between grinds.
 When sharpening chasers you will prevent burning by taking light cuts with a soft wheel. Grinding too slow with heavy cuts, o a hard wheel, will burn the chaser and cause grinding checks.
 A bad start of the die head on the work is most likely the reason for getting a thin first thread, If you want all your threads to be good, check the work and threading spindle for proper alignment and be sure they are O.K. Bad alignment will bring on trouble.
 Where possible, chamfer or bevel the work so all chasers will start cutting at the same time. Die head and work must line up properly to avoid eccentric threads. A good bevel on the work is important in getting concentric threads.
• Rough threads often result when cutting at too high a speed; cutting fluid is not properly blended—or dirty oil loaded with fine chips that act as an abrasive. On circular chasers, rough threads can also result from too much face angle—it is best to hold to ar angle of 1½°.
 If there is not enough hook angle on the face of the chaser, the top of the threads will be rough.
 If threads are oversize, it may be caused by excess pressure or the thread rolls or soft stock. In either case the pressure should be reduced. If the blank is too large, this, too will cause oversize threads and can be adjusted by using the correct blank.
 Undersize threads generally require increased pressure due to hard stock or insufficient pressure on the thread rolls. In the case of hard stock, it may be necessary to try a softer stock. Undersiz threads can also result from the blank being too small.
 Poor threads can generally be corrected by checking the blank size, adjusting for even pressure on twin thread rolls, or replacing a work thread roll.

MILLING

Types of Milling Cutters


Various high-speed steel cutters are shown in Figure 7. Tooling with carbide inserts may also be used, particularly for alloys which are more difficult to machine. As a general rule, smoothest finishes are obtained with helical or spiral cutters running at high speed, particularly for cuts over 0.75 in. (19 mm) wide. Helical cutters cut with a shearing action and, as a result, cut more freely and with less chatter than straight-tooth cutters. Coarse-tooth or heavy-duty cutters work under less stress and permit higher speeds than fine-tooth or light-duty cutters. They also have more space between the teeth to aid in chip disposal.

For heavy, plain milling work, a heavy-duty cutter with a faster, 45° left-hand spiral is preferred. The higher angle allows more teeth to contact the work at the same time. This puts a steady pressure on the arbor and spindle, thereby reducing chatter. In wide, slab milling, such cutters are particularly necessary to produce smooth finishes and avoid chatter.

Unlike plain milling cutters which have teeth only on the circumference, straddle or side mill cutters have cutting teeth on each side, as well as on the circumference or periphery. Such cutters will mill on both sides of a part or mill shallow slots. For milling shoulders it is common to use half-side cutters that have teeth only on one side and on the circumference.

Milling deep slots in stainless steel sometimes presents the problems of chatter, binding and jamming of wide chips. These difficulties can be eliminated by using a staggered-tooth cutter. Its alternating teeth cut only one-half of the slot, thereby taking a smaller bite and producing a shorter chip.

For end milling of stainless steels, the solid-shank end mill is preferred because of its high strength.

Fig. 7. Typical milling cutters used for stainless steels, with suggested geometries.

Grinding of Milling Cutters

Figure 7 shows rake angle and width of land, as well as primary and secondary clearance for high-speed steel cutters. The geometries shown give sufficient strength and clearance. On cutters up to 4 in. (102 mm) in diameter, the maximum clearance shown in the figure should be used, remembering that small cutters require a greater clearance angle than large cutters. Sufficient clearance behind the cutting edge of every tooth is necessary to avoid a rubbing or burnishing action. Excessive vibration may indicate the cutter has insufficient clearance (rigidity of the tooling and fixtures should also be considered). Hogging-in generally indicates too much rake (or possibly too high a cutting speed).

Stainless Steels Milling, End—Peripheral

The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

	Depth	Micro-Melt® Powder HS Tools							Carbide Tools					
Allov	of	T	C	Feed (inches per tooth)				T	C I	Feed (inches per tooth)				
(Annealed Condition)	Cut (inches)	Tool Mtl	Speed (fpm)	Cutter Diam (inches)			Mtl	Speed (fpm)	Cutter Diam (inches)					
	(11101100)		(ιριιι)	1/4	1/2	3/4	1-2		(ιριιι)	1/4	1/2	3/4	1-2	
410	.050	M48,T15	132	.001	.002	.003	.004	C6	345	.001	.002	.004	.006	
416	.050	M48, T15	150	.001	.002	.004	.005	C6	350	.001	.002	.005	.007	
No. 5 BQ	.050	M48, T15	156	.001	.002	.004	.005	C6	350	.001	.002	.005	.007	
Project 70+® 416	.050	M48, T15	168	.001	.002	.004	.005	C6	375	.001	.002	.005	.007	
No. 5-F	.050	M48, T15	174	.001	.002	.004	.005	C6	400	.001	.003	.005	.007	
420	.050	M48, T15	120	.001	.002	.003	.004	C6	275	.001	.002	.004	.006	
420F	.050	M48, T15	162	.001	.002	.004	.005	C6	300	.001	.003	.005	.007	
431	.050	M48, T15	96	.001	.002	.003	.004	C6	250	.001	.002	.004	.006	
440A/440B	.050	M48, T15	90	.001	.002	.003	.004	C6	240	.001	.002	.004	.006	
440C	.050	M48, T15	84	.001	.002	.003	.004	C6	235	.001	.002	.004	.006	
440F	.050	M48, T15	150	.001	.002	.003	.004	C6	275	.001	.002	.004	.006	
430	.050	M48, T15	132	.001	.002	.003	.004	C6	350	.001	.002	.004	.006	
430F/430FR	.050	M48, T15	168	.001	.002	.004	.005	C6	400	.001	.002	.005	.007	
443	.050	M48, T15	114	.001	.002	.004	.005	C6	270	.001	.003	.005	.007	
302/304/316	.050	M48, T15	90	.001	.002	.003	.004	C2	270	.001	.002	.003	.005	
Project 70+® 304/316	.050	M48, T15	140	.0012	.0024	.0036	.0048	C2	358	.0012	.0024	.0036	.006	
Project 70+ 304L/316L	.050	M48, T15	140	.0012	.0024	.0036	.0048	C2	358	.0012	.0024	.0036	.006	
302HQ-FM®	.050	M48, T15	150	.001	.002	.004	.005	C2	340	.001	.002	.005	.007	
303	.050	M48, T15	135	.001	.002	.004	.005	C2	325	.001	.002	.005	.007	
Project 70+® 303	.050	M48, T15	202	.0012	.0024	.0048	.006	C2	449	.0012	.0024	.006	.0084	
303Al Modified®	.050	M48, T15	150	.001	.002	.004	.005	C2	340	.001	.002	.005	.007	
203	.050	M48, T15	135	.001	.002	.004	.005	C2	325	.001	.002	.005	.007	
321/347	.050	M48, T15	90	.001	.002	.003	.004	C2	270	.001	.002	.003	.005	
20Cb-3® Stainless	.050	M48, T15	84	.001	.002	.003	.004	C2	250	.001	.002	.003	.005	
18Cr-2Ni-12Mn	.050	M48, T15	78	.001	.002	.003	.004	C2	245	.001	.002	.003	.005	
21Cr-6Ni-9Mn	.050	M48, T15	78	.001	.002	.003	.004	C2	245	.001	.002	.003	.005	
22Cr-13Ni-5Mn	.050	M48, T15	78	.001	.002	.003	.004	C2	245	.001	.002	.003	.005	

Contact a Carpenter representative for alloy availability.

Notes: 1) Use Cobalt or Tungsten High Speed Grades with Reduced Speeds and Feeds for Heat Treated Conditions

2) Increase Speeds and Reduce Feeds for Lighter Cuts and Better Finish

Precipitation Hardening Alloys Milling, End—Peripheral

	Depth	Micr	o-Melt [©]	Pow	der H	S Too	ols		Cai	bide	Tool	s	
Alloy	of Cut	Tool	Speed	-	d (inch			Tool	Speed			nes per t	
	(inch-	Mtl.	(fpm)	1/4	ter Di 1/2	am (in 3/4	1-2	Mtl.	(fpm)	Cut 1/4	ter Di	3/4	1-2
Custom 630				1/4			Trea	ted		1/4	1/2	3/4	1-2
Custom cos	.050	M48, T15	75	.001	.002	.003	.004	C2	255	.001	.002	.004	.006
		l		۱ ۱	Doubl	e Age	ed H1	150-M		ļ	l		
	.050	M48, T15	80	.001	.002	.003	.004	C2	260	.001	.002	.004	.006
	.050	M48, T15	75	.001	Aged .002	H 10 .003	75-H 004	1150	255	001	.002	.004	.006
	.050	10140, 1 15	75	1.001			.004 H 102	l	200	.001	.002	.004	.000
	.050	M48, T15	60	.0005		.002	.003	C2	180	.001	.002	.004	.006
					Age	d H S	00-Н	925					
	.050	M48, T15	55	.0005		.002	.003	C2	85	.001	.002	.004	.006
Project 70+® Custom 630	.050	M48, T15	90	.001	Sol i .002	ution .003	Treat	edS C2	270	001	.002	.004	006
(17Cr-4Ni)	.050	10140, 1 15	90	1	oubl			150-M	2/0	.001	.002	.004	.000
	.050	M48, T15	95		.002	.003	.004	C2	275	.001	.002	.004	.006
				l	Aged	H 10	75-H	1150		l	l		
	.050	M48, T15	85	.001	.002	.003	.004	C2	265	.001	.002	.004	.006
	.050	M48, T15	70	.0005		\ged I .002	Ĥ 102 ∣.003	5 C2	190	.001	.002	.003	.004
	.050	10140, 1 15	70	.0003			.003 900-H		130	.001	.002	.003	.004
	.050	M48, T15	65	.0005		.002	.003	C2	90	.001	.002	.003	.004
Custom 450®					So	lution	Trea	ted					
	.050	M48, T15	102	.001	.002	.003	.004	C2	275	.001	.002	.004	.006
	050	IM40 T1E	96	.001	Aged .002	H 10 ₀₀₂	.004	1150 C2	225	001	ا ممع	امميا	006
	.050	M48, T15	90	1.001		.003 aed	.004 H 102		225	.001	.002	.004	.006
	.050	M48, T15	84	.0005		.002	.003	C2	195	.001	.002	.003	.004
		l		l	Age	d H S	900-H	925		ļ	l		
	.050	M48, T15	72	.0005	.001		.003	C2	90	.001	.002	.003	.004
Custom 465® Custom 455®	.050	M48, T15	108	.001	.002	Anne .003	ealed .004	C2	275	.001	.002	.004	.006
PH 13-8 Mo*	.050	10140, 1 15	100	.001	.002		ed	62	2/5	.001	.002	.004	.000
15Cr-5Ni	.050	M48, T15	72	.0005	.001	.002		C2	90	.001	.002	.003	.004
Project 70+®		ı	i	ı	So	ution	Treat	ted	1	ı	i	1 1	
15Cr-5Ni	.060	M48, T15	132	.0014	.0028		1	C2	380	.0019	.0032	.0059	.0074
	.060	M48, T15	108	0012	0026		jed .0052	C2	290	0017	กกวด	.0055	0071
Pyromet®	1.000	11170, 110	100	_		_	_	mper		.0017	1.0020	.0000	.00/1
350 & 355	.050	M48, T15	102	.001	.002	.003	.004	C2	230	.001	.002	.004	.006
	1.	 	 	L			Rc 38-] i .	 	l L		
	.050	M48, T15	78	.0005	l		.003 ver Ro	C2	190	.001	.002	.003	.004
	.050	M48, T15	72	.0005	.001	.002	ver Ko	C2	90	.001	.002	.003	.004
	.000	11170, 1 13	12	.0003	.001	.002	.000	02	50	.001	.002	.000	.004

^{*}Registered trademark of AK Steel Corp.

Notes: 1) M33 and M41 through M47 can be used where T15 is shown

²⁾ Increase Speeds and Reduce Feeds for Lighter Cuts and Better finish

Milling Parameters and Cutting Fluid

The milling tables on pages 71 and 72 show speeds and feeds for milling stainless steels using either high-speed steel or carbide tooling. Feeds may need to be varied from the nominal values. If the feed is too light, the tool will burnish the work; if the feed is too heavy, tool life will be shortened.

Once a milling cut has been started, it should not be stopped unless absolutely necessary, since the tool will undercut when starting again. When it is necessary to back out, the tool should be placed two or three turns behind the work before starting again. This eliminates the danger of backlash and guards against undercutting.

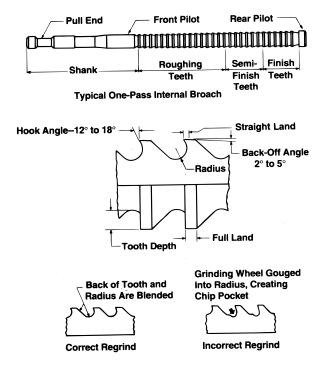
Trouble-Shooting Check Chart

PROBLEM:	POSSIBLE SOLUTIONS:
Cutter "hogs in."	 Check rake angle. Too much rake will cause "hogging in." Check speed.
Excessive vibration.	 Check clearance, especially on cutters with more than one cutting surface. If clearance is not enough, rubbing will cause vibration. Check cutting fluid. Binding may be result of too heavy an oil, not carrying away heat fast enough.
Cutter wears badly without galling or heating up.	 Add paraffin oil to cutting fluid. Too much sulphur base oil wears away cutting edge, as sulphur is abrasive.
Cutter "bugs" up and burns.	Check cutting fluid. Mixture may be too thin. Assuming cutting speed is not too fast, add more sulphur base oil.
Cutter burnishing behind cutting edge.	Check width of land and clearance. This is definite indication the land is too wide.
Plain milling cutter binds in deep slots.	• Change to a staggered tooth side mill with alternating spiral teeth. • Check alignment to tool and work, axis of cutter may not be parallel with work. • If using a plain slitting saw, change to one with side chip clearance. These saws have standard concave sides, and on some jobs the depth of this concavity may have to be increased to eliminate galling the sides of the work.
Cuts not straight.	Check how work is clamped. Work piece can be sprung from over-tightening of clamp or vise.
Work piece slips.	• Some pieces, due to shape are hard to hold. Often, a piece of paper slipped under work will help to prevent slipping.
Chatter on straight tooth cutter.	● If cutter is sharp and clearances sufficient, plus good lubrication, this job requires a helical tooth cutter which has a shearing action that cuts more freely. ● If you are using a helical tooth cutter, look for backlash in machine, a loose arbor or a worn shank on miller. ● Check solid shank cutters for nicks. A nick leaves a high spot and cutter works loose.

PROBLEM:	POSSIBLE SOLUTIONS:
Shell end mill won't cut accu- rately after grinding.	 This is an indication that cutter was removed from arbor for grinding. Once a shell end mill or face mill is on arbor, don't take it off. You can seldom reset it as it was.
Cutter does not run true.	● Generally this is due to "poor housekeeping." Cleanliness is of major importance. Dirt or a fine chip can be caught between the arbor and the spindle or between the cutter and the arbor. This will cause the cutter to run several thousandths out-of-true. ● Also a "sprung" arbor or a "burred" spacer will cause same trouble.
Work cuts out-of-square.	 Again "good housekeeping." This can be from chips between the work and the fixture or chips and dirt in the "T" slots, causing misalignment when clamping fixture. Brush or blow all chips away before a new work piece is mounted.
Work burnishes.	Cut is too light. Cutter not biting into steel. Increase depth of cut.
Poor or rough finishing cut.	 Your last cut was too heavy. Take a lighter cut and increase speed for better finish. Check for dull tool. Feed too high. Surface speed too low. Increase SFM slowly until proper speed is ascertained.
Indication of high pressure on cutters.	 Change to a coarser tooth cutter. Too many teeth cutting at same time. A coarser tooth cutter will allow more space between teeth and relieve chip packing. May be due to chip packing, caused by low oil pressure or misdirected flow so that ships are not washed out of teeth or flutes.
Too much rake.	 This will show up by cutter "hogging in." Use smaller rake angle.
Vibration.	 Not enough clearance on top and sides. Cutter is binding. Grind for more clearance. Check size of arbor. It should not

BROACHING

General Guidelines


Broaching is a fast way to remove metal either externally or internally, and produces a finished job to close tolerances. The only limitation is that there must be no interference with the movement or passage of the broach. Broaching machines fall into two general classes, vertical or horizontal. Either can be used for push or pull broaching.

For internal broaching, a properly drilled or reamed hole is satisfactory. For external or surface broaching, preliminary machining operations are seldom required.

It is essential that chips not be allowed to build up during broaching. Otherwise, damage to the broach may result from chip packing. Damage may also occur if the broach is not properly aligned, resulting in excessive localized load on the teeth.

Broach Design and Grinding

Broaches for stainless alloys have been made of Micro-Melt® Powder high speed steel and Micro-Melt Maxamet® alloy. A broach is a simple tool to handle, because the broach manufacturer builds into it the necessary feed and depth of cut by steps from one tooth to another. Basically, a broach can incorporate the roughing cut, the semi-finished cut and the final precision cut, as shown in Figure 8, or any combination of these operations. Some broaches are made with burnishing buttons when a burnished finish is required. Since the form or shape of a broach tooth is unlimited, there is no limitation to the shape or contour of broached surfaces.

Fig. 8. Typical broaching tool used for stainless steels, with suggested geometries and grinding techniques.

In designing the radius for the broach, the manufacturer provides maximum tooth strength and a pocket for chips. The broach manufacturer may also incorporate into the broach, depending on the job, such items as side relief (flat broaches), undercut and clearance (spline broaches) and chip breakers (to handle wide chips).

When a broach becomes dull, it should be resharpened only on a broach grinder or returned to the manufacturer to be reground. For internal broaches, the back-off angle should be held to a minimum, preferably 2° and not to exceed 5°, as shown in Figure 8. Too much back-off angle will shorten broach life due to size reduction from resharpening.

Any nicks on the cutting edges of the broach will score the surface of the work. Therefore, careful handling is very important.

Stainless Steels Broaching

The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

	Micro-N	/lelt [®] Powder High S	peed Tools
Alloy (Annealed Condition)	Tool Material	Speed (fpm)	Chip Load (inches per tooth)
410	M48, T15	24	.0040
416	M48, T15	30	.0040
No. 5 BQ	M48, T15	30	.0040
Project 70+® 416	M48, T15	30	.0040
No. 5-F	M48, T15	36	.0040
420	M48, T15	18	.0030
420F	M48, T15	24	.0030
431	M48, T15	18	.0030
440A/440B	M48, T15	18	.0020
440C	M48, T15	12	.0020
440F	M48, T15	18	.0020
430	M48, T15	24	.0030
430F/430FR	M48, T15	36	.0040
443	M48, T15	24	.0030
302/304/316	M48, T15	18	.0040
Project 70+® 304/316	M48, T15	24	.0036
Project 70+® 304L/316L	M48, T15	24	.0036
302HQ-FM®	M48, T15	24	.0040
303	M48, T15	25	.0036
Project 70+® 303	M48, T15	39	.0048
303Al Modified®	M48, T15	24	.0040
203	M48, T15	25	.0036
321/347	M48, T15	18	.0030
20Cb-3® Stainless	M48, T15	12	.0030
18Cr-2Ni-12Mn	M48, T15	12	.0030
21Cr-6Ni-9Mn	M48, T15	12	.0030
22Cr-13Ni-5Mn	M48, T15	12	.0030

Precipitation Hardening Alloys Broaching

	Micro	-Melt® Powder High Spee	d Tools
Alloy	Tool Material	Speed (fpm)	Chip Load (inches per tooth)
		Solution Treated	
17Cr-4Ni	M48, T15	8	.0016
	M48, T15	Double Aged H 1150M	.0016
	10140, 1 15	Aged H 1075 - H 1150	.0010
	M48, T15	5	.0016
		Aged H 1025	
	M48, T15	5 Aged H 900 - H 925	.0016
	M48, T15	5	.0016
	14140, 1113	Solution Treated	.0010
Project 70+®	M48, T15	12	.002
Custom 630	1440 T45	Double Aged H 1150M	l
	M48, T15	15 Aged H 1075 - H 1150	.002
	M48, T15	10	.002
		Aged H 1025	1 1002
	M48, T15	10	.002
	M40 T45	Aged H 900 - H 925	
	M48, T15	10 Solution Treated	.002
Custom 450®	M48, T15	18	.002
		Aged H 1100 - H 1150	1
	M48, T15	12	.002
	M40 T15	Aged H 1000 - H 1050	1 000
	M48, T15	9.6 Aged H 900 - H 950	.002
	M48, T15	9.6	.002
Custom 465®	,	Annealed	
Custom 455®	M48, T15	9.6	.002
PH 13-8 Mo* 15Cr-5Ni	M48, T15	Aged	.002
13OL-3IAI	19140, 113	Solution Treated	.002
Project 70+®	M48, T15	24	.002
15Cr-5Ni	•	Aged	
	M48, T15	18	.002
Pyromet® 350 & 355	M48, T15	Equalized & Overtempered	.002
r yroniet 350 & 355	140, 115	Aged Rc 38-40	.002
	M48, T15	9.6	.002
		Aged Over Rc 40	1
	M48, T15	_	_

Contact a Carpenter representative for alloy availability. *Registered trademark of AK Steel Corp.

Trouble-Shooting Check Chart

Broaching, of all machine operations, is the one where "good housekeeping" is the most essential. Not only should broach teeth be brushed often but broaching machines present many places with relatively small clearances where chips may lodge and jam, causing damage to the machine and broach. Chips are unavoidable and are broaching's greatest menace.

PROBLEM:

POSSIBLE SOLUTIONS:

Broken teeth.

- Packing of chips due to improper grinding (see sketch on page 78) may be one cause for broken teeth.
 Chip packing on stainless can occur where a continuous chip is being made and the proper clearance has not been provided for.
 On surface broaching a large error in alignment can throw too heavy a load on teeth, causing breakage.
 Always check your holder first for straight travel before a part is actually broached.
 When placing broach inserts in holder, be sure everything is clean and free from grit or chips. Foreign matter can force inserts out of line.
 Check steps of inserts with dial indicator. A small difference in
- Check steps of inserts with dial indicator. A small difference in their height may tear teeth.

Spoiled work or broken insert on surface broach.

• Check insert assembly in holder to see if screws are too long or too short. If the insert is loose, the screws are too long and a loose insert will not cut accurately. This is also cause of some insert breakage. If screws are too short and are pulled up with force, the screw hole becomes weak and eventually pulls out. Be sure your screws are the right length and then tighten them without excessive force.

Insert breaks in assembly.

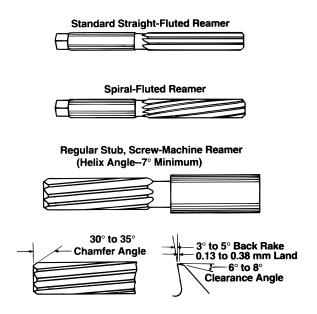
• This is usually due to "poor housekeeping." You may have assembled it with a chip or some other foreign matter between insert and holder and the force of tightening screws broke it. All broach inserts are made of fully hardened high speed steel, which contributes further to easy breakage.

Poor finish and variation in size on broached surface.

• Look for loose clamps. • Check loading fixture and seating of pieces. Improper loading and chip accumulation are causes.

PROBLEM:	POSSIBLE SOLUTIONS:
Breakage of in- ternal broach.	 Check alignment. See that direction of pull is at right angles to face place. Check center axis of broach with axis of face plate as these must be in line. This is very important where part is held in a cup in the face place. If a "follow rest" is used, this also must be in perfect alignment with pullhead and face plate.
Drifting.	Check the center of the starting hole. It probably is not centralized with broach center.
Round or spline broaches cut off center.	 This is caused by "drifting." On round holes one side does not clean up. On spline broaches the splines will be eccentric. See above recommendation to eliminate drifting.
Excessive wear and dulling of teeth.	 Again this is usually the result of "drifting." Also check cutting fluid. If too rich in sulphur, cut back with paraffin base oil.
Chatter.	 Inserts may have feather edge and require stoning. Parts not held tight enough. Part vibrates from forcing the cut. Chatter can also develop from using too light a machine. Check hydraulic system.
Parts will not hold size.	 Look for something loose while broach is cutting. Part may be "springing" due to cutting force. Check clamps. Are they strong enough? Check for deflection in machine.
Tearing and/or heavy burrs.	Dead soft steel is draggy and can be the cause of this condition.

REAMING


General Guidelines

Reaming is used to finish previously drilled or bored holes to provide accurate dimensions and a smooth finish. It is important that ample material be left from the previous operation to permit the reamer to take a definite cut, particularly with non-free-machining austenitic alloys. This will allow the reamer to get below any work-hardened layer. In addition, it will prevent burnishing or glazing, production of holes which are undersized or have a poor finish, and rapid tool wear.

Types of Reamers

Figure 9 shows several typical high-speed steel reamers. Carbide-tipped reamers may also be used. Spiral-fluted reamers with a helix angle of approximately 7° are suggested. There is less tendency for this type of reamer to chatter, and better chip clearance is secured. This is particularly true for interrupted cuts, such as in a keyway. Left-hand (reverse) spiral reamers with right-hand cutting or rotation are suggested. Right-hand spiraling of the flutes with right-hand rotation helps the tool to cut more freely, but makes it feed into the work too rapidly.

When tapered holes must be reamed, any one of the standard taper reamers, ground for stainless steels, will provide a satisfactory finish. However, the hole must first be carefully drilled or bored.

Fig. 9. Typical reamers used for stainless steels, with suggested geometries.

Grinding and Care of Reamers

The clearances and cutting rakes suggested in Figure 9 will minimize binding and apply to either solid or inserted-blade type high-speed steel reamers. Narrow lands are recommended to minimize rubbing and, consequently, chatter or binding. Cutting edges should be stoned to a fine finish, since any coarse grinding marks remaining on the reamer will transfer their pattern to the finished hole. The chamfer must be concentric with all flutes to avoid cutting eccentric holes.

Reamers should be handled and stored carefully, preferably in individual racks or boxes with partitions. If the reamer is dropped on metal or hit by other tools, it may be nicked, as all unprotected areas are ground working edges. When not in use, high-speed steel reamers should be protected from corrosion with a complete coating of oil. A small rust spot on the cutting edge will start a pit or nick. A deep nick can spoil the reamer for any further fine work.

Stainless Steels Reaming

The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

		-Melt® HS Tools		rbide (inserts)	Feed (inches per revolution) Reamer Diameter (inches)							
Alloy	Tool	Speed	Tool	Speed		ricumer Diameter (inches)						
(Annealed Condition)	Mtl.	(fpm)	Mtl.	(fpm)	1/8	1/4	1/2	1	1½	2		
410	M48, T15	108	C2	110	.003	.006	.010	.014	.018	.022		
416	M48, T15	150	C2	145	.003	.008	.013	.018	.022	.025		
No. 5 BQ	M48, T15	150	C2	145	.005	.008	.013	.018	.022	.025		
Project 70+® 416	M48, T15	156	C2	150	.005	.008	.013	.018	.022	.025		
No. 5-F	M48, T15	162	C2	155	.005	.008	.013	.018	.022	.025		
420	M48, T15	90	C2	95	.003	.006	.010	.014	.018	.022		
420F	M48, T15	104	C2	110	.004	.006	.010	.014	.017	.021		
431	M48, T15	78	C2	85	.003	.005	.008	.012	.015	.018		
440A/440B	M48, T15	78	C2	85	.003	.006	.010	.015	.018	.021		
440C	M48, T15	68	C2	75	.003	.006	.010	.015	.018	.021		
440F	M48, T15	80	C2	100	.003	.006	.010	.015	.018	.021		
430	M48, T15	102	C2	105	.003	.005	.008	.012	.015	.018		
430F/430FR	M48, T15	156	C2	150	.005	.008	.013	.018	.022	.025		
443	M48, T15	90	C2	95	.003	.005	.008	.012	.015	.018		
302/304/316	M48, T15	84	C2	90	.003	.005	.008	.012	.015	.018		
Project 70+® 304/316	M48, T15	124	C2	130	.0036	.006	.0096	.0144	.018	.0216		
Project 70+ 304L/316L	M48, T15	124	C2	130	.0036	.006	.0096	.0144	.018	.0216		
302HQ-FM®	M48, T15	102	C2	105	.003	.005	.008	.012	.015	.018		
303	M48, T15	98	C2	100	.005	.008	.013	.018	.022	.025		
Project 70+® 303	M48, T15	140	C2	143	.006	.0096	.0156	.0216	.0264	.0300		
303Al Modified®	M48, T15	102	C2	105	.005	.008	.013	.018	.022	.025		
203	M48, T15	98	C2	100	.005	.008	.013	.018	.022	.025		
321/347	M48, T15	84	C2	90	.003	.005	.008	.012	.015	.018		
20Cb-3® Stainless	M48, T15	72	C2	80	.003	.005	.008	.011	.014	.017		
18Cr-2Ni-12Mn	M48, T15	72	C2	80	.003	.005	.008	.012	.015	.018		
21Cr-6Ni-9Mn	M48, T15	72	C2	80	.003	.005	.008	.012	.015	.018		
22Cr-13Ni-5Mn	M48, T15	72	C2	80	.003	.005	.008	.012	.015	.018		

Precipitation Hardening Alloys Reaming

		-Melt® HS Tools		rbide (inserts)			(inches			
Alloy	Tool Mtl.	Speed (fpm)	Tool Mtl.	Speed (fpm)	1/8	1/4	1/2	1	1½	2
Alloy	IVICI.	(ipiii)	IVICI.		lution 1		1/2		1 72	
17Cr-4Ni	M48, T15	55	C2	175	.003		.008	.011	.015	.018
1701 4141	11140, 110	00	02		le Aged			.011	.0.0	.010
	M48, T15	60	C2	190	.003	.005	.008	.011	.015	.018
				Aged	H 1075	- H 115	0			
	M48, T15	45	C2	140	.003	.005	.008	.011	.015	.018
	M40 T45	۱ ۵۶	1 00		Aged H		000	011	045	010
	M48, T15	35	C2	115	.003 d H 900	.005	.008	.011	.015	.018
	M48, T15	28	C2	95	.003	.005	.008	.011	.015	.018
	11140, 110		02		lution 1		.000	.011	.0.0	.010
Project 70+®	M48, T15	70	C7	200	.003		.008	.011	.015	.018
Custom 630	"		1	Doub	le Aged	H 1150	M	1		
	M48, T15	75	C2	210	.003	.005	.008	.011	.015	.018
			ı		H 1075	i	1	1		1
	M48, T15	55	C2	160	.003	.005	.008	.011	.015	.018
	M48, T15	45	C2	135	Aged H .003	.004	.006	.010	.013	.016
	10140, 115	45	C2		id H 900			.010	.013	.010
	M48, T15	40	C2	110	.001	.001	.001	.001	.001	.001
				So	lution 1	reated		-		-
Custom 450®	M48, T15	72	C2	190	.003	.005	.008	.011	.015	.018
				Aged	H 1100	- H 115	0			
	M48, T15	78	C2	190	.003	.005	.008	.011	.015	.018
			ı		H 1000	ı	ı	i	ı	1
	M48, T15	54	C2	150	.003	.005	.008	.011	.015	.018
	M40 T15	۱ 40	l co		d H 900	- н 950 .001		001	001	001
	M48, T15	42	C2	125	Annea		.001	.001	.001	.001
Custom 465®										
Custom 455® PH 13-8 Mo*	M48, T15	72	C2	190	.003 Age	.005	.008	.011	.015	.018
15Cr-5Ni	M48, T15	36	C2	100	.001	.001	.001	.001	.001	.001
	.,			Sc	lution 1	rested			1	1
	M48. T15	90			.0033	.0053	.0083	.0106	.0127	.0159
Project 70+®	IVI48, I I5	90	C2	95	.0033	.0053	.0083	.0164	.0206	.0159
15Cr-5Ni		_	02	33	Age		.0120	.0104	.0200	.0247
	M48, T15	66	l —	-	.0033	.0056	.0089	.0110	.0136	.0161
	_	_	C2	75	.0043	.0066	.0099	.0156	.0191	.0209
				Equalize	d and O	vertem	pered			
Pyromet [®] 350 & 355	M48, T15	72	C2	190	.003	.005	.008	.011	.015	.018
		۱ ۵۵	۱ ۵۰		ged Rc 3		0.00	001	1 001	
	M48, T15	36	C2	10	.001	.001	.001	.001	.001	.001
	M48, T15	ı —	l —	Aç	jed Ove	r KC 40	l —	I —	I —	I —
	, 110			l	l					

Contact a Carpenter representative for alloy availability. *Registered trademark of AK Steel Corp.

Reaming Parameters

Feeds and speeds for both roughing and finishing operations are listed in tables on pages 85 and 86 for both high-speed steel and carbide tooling. When finish of the hole is not critical, the parameters for roughing can be used. Smooth finishes require significantly lower speeds. When both size and finish are important, a two-step operation should be used with both roughing and finishing cuts.

Alignment

A frequent source of trouble in machine reaming is caused when the axis of the spindle is not in proper alignment with the axis of the reamer. Two noticeable types of misalignment occur, (1) parallel and (2) angular. Corrections for either or both must sometimes be made in a single setup. Cause for misalignment, singly or in combination, can be due to wear in the ways, wear or dirt in the sleeve or tool clamp, or poor leveling of the machine. These troubles are generally indicated when a rigidly held reamer produces a poor finish and oversized or eccentric holes, especially at the start of a hole.

To correct misalignment, the machine and tool holders should be examined for chips, dirt, worn sleeves or worn bushings. Turret lathes and multispindle automatic screw machines should be examined for worn ways and improper indexing. A quick way to correct for these conditions and get proper alignment is to use floating holders. It should be noted that some floating holders compensate only for parallel misalignment, while others correct for both parallel and angular misalignment.

Trouble-Shooting Check Chart

PROBLEM:	POSSIBLE SOLUTIONS:
Cutting edges burn.	 Check spindle speed. It may be too fast. ● Check cutting fluid as it must also be good coolant. You may be using too rich a mixture and need paraffin to thin it out, which is helpful in carrying off heat.
Cutting edges wear badly or dull rapidly.	 Check cutting fluid as it may be too rich in sulphur base oil and needs to be thinned out. Sulphur is abrasive and if your mixture is heavy, it will wear away cutting edge rapidly. See page 115 for "rule-of-thumb" governing judgment of mixture. Reamer should not be rotated backward to remove from hole. Either pass reamer through hole or withdraw without stopping forward rotation.
Hole cuts eccentric.	● Check chamfer. It must be concentric with all flutes. A poor start means a poor job. ● Check alignment of work with tool. Misalignment may be due to poor work-holding fixtures. Fine chips and incorrect setting will also cause this trouble. Try using a "floating holder."
Rough finish.	If you know reamer is sharp and correctly ground and your cutting fluids are satisfactory, reduce spindle speed.
Chatter.	● Check the lands, if using a straight fluted reamer. They may be too wide and are rubbing, which causes chatter. ● Also sometimes caused by dull reamer, or drilled hole too large which does not let reamer get a good bite. ● There is less tendency to chatter with spiral fluted reamers. ● Check rigidity of tool holder; try small chamfer at start of hole.
Work glazes or burnishes.	• This occurs mostly when reaming 18-8 types. Reamer is not biting in deep enough to get good cut. Acts like letting a drill dwell and work-hardens surface of steel. Deeper bite will usually correct this fault.
Tool marks in finished reamed hole.	 Reamer was ground with too coarse a wheel. Use a finer grit, free-cutting grinding wheel; being careful not to burn edges of reamer. See No. 5 on page 33. It is characteristic for tools to leave the pattern of the grinding wheel on the part.
Reamer binds.	 Check clearance and rake angles with sketches on page 84. If reamer is within these limits, it will not bind. Wide lands or insufficient back-off angle can also cause binding.
Nicks in flutes.	● This comes from careless handling and storage when not in use. Handle them as carefully as the reamer manufacturer does when he ships them to you. Store in individual boxes or racks with separations. Remember, the cutting edge is always vulnerable. ● Reamers should be well covered with oil when not in use, as a small rust spot on the cutting edge will start a pit or nick.

SAWING

General Guidelines

Stainless steels can be sawed with band saws or power hack saws using high-speed steel blades. Speed and feed depend primarily on the hardness of the material, and the pitch of the blade depends on the size of the material. Thicker materials are cut with coarser teeth to avoid clogging with chips. On the other hand, when sawing thin-gauge material or tubing, a sufficiently fine-tooth saw is required so that at least two or three teeth are cutting at all times. A coarse-tooth saw, besides bridging the work, will gouge out metal and break teeth.

Sawing Parameters

Guidelines for power hack sawing are shown in the table on page 90. Speeds for band saws range from 50 to 100 ft/min. (15 to 30 m/min.), with harder materials requiring a lower speed. Nominal pitches for band saw blades generally range from 8-10 teeth/in. (2.5-3 mm) for material up to 0.25 in. (6 mm) thick, to 3-6 teeth/in. (4-8.5 mm) for material 1.5 in. (38 mm) thick or greater.

Stainless Steels Sawing—Power Hack Saw

The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

			h per inch)	Speed	Feed	
Alloy (Annealed Condition)	Under 1/4	1/4 to 3/4	kness (inch 3/4 to 2	Over 2	Strokes/ Minute	Inches/ Stroke
410	10	10	6	4	120	.006
416	10	10	6	4	125	.006
No. 5 BQ	10	10	6	4	140	.006
Project 70+® 416	10	10	6	4	140	.006
No. 5-F	10	10	6	4	160	.006
420	10	10	6	4	115	.006
420F	10	10	6	4	135	.006
431	10	10	6	4	85	.005
440A/440B	10	10	6	4	60	.005
440C	10	10	6	4	55	.005
440F	10	10	6	4	110	.006
430	10	10	6	4	115	.005
430F/430FR	10	10	6	4	125	.009
443	10	10	6	4	110	.005
302/304/316	10	10	6	4	90	.005
Project 70+® 304/316	10	10	6	4	100	.005
Project 70+	10	10	6	4	100	.005
304L/316L	10	10	6	4	100	.006
302HQ-FM®	10	10	6	4	100	.006
303	10	10	6	4	110	.006
Project 70+® 303	10	10	6	4	100	.006
303Al Modified®	10	10	6	4	100	.006
203	10	10	6	4	90	.005
321/347	10	10	6	4	70	.005
20Cb-3® Stainless	10	10	6	4	70	.005
18Cr-2Ni-12Mn	10	10	6	4	70	.005
21Cr-6Ni-9Mn	10	10	6	4	80	.005

Precipitation Hardening Alloys Sawing—Power Hack Saw

All Grades	10	6	6	4	80	.006			
	Solution Treated								
Aged 275-325 BHN	10	10	6	4	55	.005			
Aged 325-375 BHN	10	10	6	4	45	.004			

GRINDING

Wheels

Aluminum oxide wheels are most commonly used for stainless steels. Silicon carbide wheels may also be used, but at a reduced wheel life; therefore, their use is limited to special applications. Medium-density wheels of hardness grades H to L are generally selected for stainless steels, although harder wheels are used for thread grinding. Grit sizes commonly used are 46, 54 or 60; finer grits may be used to produce a finer finish. Vitrified-bond wheels are normally used, although the stronger resinoid-bond wheels are preferred for equipment operated at higher speeds. Grinding wheels used previously to grind another metallic material should not be used to grind a stainless steel, since particles of the other material may be imbedded in the stainless steel, affecting its corrosion resistance.

Grinding Parameters

For many grinding operations, typical wheel speeds are 5000 to 6500 ft/min. (1520 to 1980 m/min.). For surface grinding, table speeds are 50 to 100 ft/min. (15 to 30 m/min.), with a downfeed of up to 0.002 in/pass (0.050 mm/pass) for roughing and 0.0005 in./pass (0.013 mm/pass) for finishing, and a crossfeed of 0.050 to 0.500 in./pass (1.3 to 13 mm/pass). Thread grinding is done at higher speeds with harder wheels, as mentioned previously.

OTHER SPECIALTY METALS

High Temperature Alloys Turning—Single Point and Box Tools

The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

			/lelt® Pov		Ca	rbide To	ols (inse	rts)			
	Depth	High S	Speed To	ols		Speed	(fpm)				
	of Cut	Tool	Speed	Feed	Tool	Un-		Feed			
Alloy	(inches)	Material	(fpm)	(ipr)	Mtl.	coated	Coated	(ipr)			
				Annealed							
BUBA LAOFO	.150	_	-	_	C3	340	400	.015			
NiMark® 250	.025		–	_	C3	380	500	.007			
NiMark 300 NiMark 350				Aged	_						
INIIVIAI K 330	.150		-	_	C3	105	140	.010			
	.025	_	-	_	C3	125	160	.005			
		Annealed									
Otaliala a Tara 440	.150		l –	_	C6	275	350	.020			
Stainless Type 410 Greek Ascoloy	.025	_	_	_	C7	350	450	.007			
AMS 5616				Rc 35							
AWIS SOID	.150		_	_	C7	215	280	.015			
	.025	_	_	_	C7	280	350	.007			
19-9 DL	Solution Treated										
19-9 DX	.100		l _	_	C2	135	160	.015			
Pyromet® N-155	.025	_	_	_	C3	160	190	.007			
Pyromet A-286			•	Aged	•						
Pyromet V-57	.100		-	_	C2	120	140	.010			
,	.025		_	_	C3	140	165	.007			
Pyromet® 718			So	lution Trea	ted						
Pyromet 625	.100	_	-	-	C2	70	80	.010			
Pyromet X750	.025		_	_	C3	90	100	.007			
Pyromet 751	400			Aged				040			
Pyromet 80A	.100 .025	_	_	_	C2 C3	65 80	75 95	.010 .007			
Waspaloy	.025		_	_	L3	80	95	.007			
Pyromet® 90	Solution Treated										
Pyromet 41	.100 .025	_	_	_	C2 C3	60 70	70 80	.010 .007			
*	.025		_			/0	80	.007			
			So	lution Trea	ted		, 7				
Pyromet® 680	.100	_	_	_	C2	90	100	.010			
	.025		_	_	C3	100	110	.007			

Electronic Alloys Turning—Single Point and Box Tools

			Melt® Po		Ca	Carbide Tools (insert					
	Depth	High	Speed To	ools		Speed	(fpm)				
Alloy	of Cut (inches)	Tool Material	Speed (fpm)	Feed (ipr)	Tool Mtl.	Un- coated	Coated	Feed (ipr)			
Carpenter High Permeability "49" Carpenter Invar "36" Hiperco® 50 A Kovar®	.150 .025	M48, T15	36 48	.010 .005	C2 C3	100 110	120 130	.010 .005			
Electrical Iron Silicon Core Iron A & B	.150 .025	M48, T15	96 130	.015 .007	C6 C7	350 400	400 490	.020 .007			
Silicon Core Iron `A-FM & B-FM	.150 .025	M48, T15	144 192	.015 .007	C6 C7	400 475	485 625	.020 .007			
Silicon Core Iron C	.150 .025	M48, T15	90 126	.015 .007	C6 C7	300 385	375 475	.020 .007			
430F & 430 FR Solenoid Quality	.150 .025	M48, T15	192 210	.015 .007	C6 C7	525 575	600 650	.015 .007			
Chrome Core® 8	.150 .025	M48, T15	120 150	.015 .007	C6 C7	450 550	600 750	.015 .007			
Chrome Core 8-FM	.150 .025	M48, T15	198 222	.015 .007	C6 C7	575 650	750 850	.015 .007			
Chrome Core 12	.150 .025	M48, T15	120 150	.015 .007	C6 C7	450 550	600 750	.015 .007			
Chrome Core 12-FM	.150 .025	M48, T15	198 222	.015 .007	C6 C7	575 650	750 850	.015 .007			
Free-Cut Invar "36"®	.150 .025	M48, T15	96 120	.015 .007	C2 C3	275 320	300 365	.015 .007			

Tool Steels Turning—Single Point and Box Tools

			/lelt® Pov		Ca	rbide To	ols (inse	rts)		
	Depth of	High S	Speed To	ols		Speed	(fpm)			
Alloy	Cut (inches)	Tool Material	Speed (fpm)	Feed (ipr)	Tool Mtl.	Un- coated	Coated	Feed (ipr)		
N 44 0 ' 10				Annealed						
No. 11 Special® Green Label	.150 .025	M48, T15	135 180	.015 .007	C6 C7	450 600	600 650	.015 .007		
Solar®										
No. 481 S7	.150 .025	M48, T15	105 120	.015 .007	C6 C7	310 410	410 500	.015 .007		
Stentor®				Annealed			-			
No. 484° Vega° R.D.S.°	.150 .025	M48, T15	90 100	.015 .007	C6 C7	270 315	315 380	.015 .007		
N - C408				Annealed						
No. 610 [®] Hampden [®]	.150 .025	M48, T15	55 72	.010 .005	C6 C7	160 210	210 250	.010 .005		
No. 882		Annealed								
No. 883® No. 345	.150 .025	M48, T15	90 108	.015 .007	C6 C7	300 375	375 425	.015 .007		
T-K®	Annealed									
Thermowear® Speed Star® Ten Star® Star Zenith Star-Max®	.150 .025	M48, T15	72 90	.015 .007	C6 C7	225 280	280 370	.015 .007		
Four Star			•	Annealed						
Seven Star® Super Star®	.150 .025	M48, T15	72 78	.015 .007	C6 C7	220 250	250 300	.015 .007		
	'		Sol	ution Treat	ed	•				
Pyrotool® A Pyrotool V	.100 .025	M48, T15	_ _	 Aged	C2 C3	135 160	160 190	.015 .007		
	.100 .025	M48, T15	_ _	_ _ _	C2 C3	120 145	145 170	.010 .007		
			Sol	ution Treat	ed					
Pyrotool® 7 Pyrotool EX Pyrotool M	.100 .025	M48, T15	_ _	_ _ _	C2 C3	70 80	80 90	.010 .007		
Pyrotool W	.100 .025	M48, T15		Aged — —	C2 C3	65 75	75 85	.010 .007		

High Temperature Alloys Turning—Cut-Off and Form Tools

	Tool	Mtl.			Fee	ed (inch	es per r	evolutio	n)	
	Micro- Melt® Powder	bide				Cut-O Tool W	ff and l /idth (in			
Alloy	HS Tools	Tools		1/16	1/8	1/4	1/2	1	1½	2
					Anı	nealed				
NiMark® 250	M48, T15		_		_	_	_	_	_	_
NiMark 300 NiMark 350		C6	200	.003	.004	.005	.003	.0025	.0025	.0015
I VIII VIGI K 330					Anı	nealed				
	M48, 115		_						_	_
Stainless Type 410		C6	275	.004	.0055	.007	.005	.004	.0035	.0035
Greek Ascoloy		_	.		Ro	35		_		
AMS 5616	M48, 115	C6	175	.003	.003	.0045	.003	.002	.002	.002
		_ C6	1/5	.003				.002	.002	.002
		Solution Treated								
19-9 DL	M48, T15		_	_	_	_	_	_	_	_
19-9 DX		C2	95	.003	.005	.007	.004	.003	.003	.002
Pyromet® N-155 Pyromet A-286					A	\ged				
Pyromet V-57	M48, T15		_	_			_	_	_	_
. 7.0		C2	80	.003	.005	.007	.004	.003	.002	.0015
					Solutio	n Treate	ŀ			
Pyromet® 718	M48, T15		_			_			_	_
Pyromet 625 Pyromet X750		C2	45	.003	.0045	.006	.004	.003	.0025	.0015
Pyromet 751		l	'			l Iged		l	1	I
Pyromet 80A	M48, T15	ı	.			igeu ∣ ∣		I	1	I
Waspaloy	IVI48, I 15	C2	45	.003	.003	.0045	.003	.0025	.002	.001
		C2	43	.005	.003	.0043	.005	.0023	.002	.001
	Solution Treated									
Pyromet® 90	M48, T15		_	_	_	_	_	l —	_	_
Pyromet 41		C2	45	.003	.0045	.006	.004	.003	.0025	.0015
						L	_			
			,		Solutio	n Treate	d		1	1
	M48, T15			_	-	- 007	-		-	-
		C2	95	.003	.005	.007	.004	.003	.003	.002

Electronic Alloys Turning—Cut-Off and Form Tools

	Tool	Mtl.			Fe	eed (incl	n per re	volution)	
	Micro- Melt [®] Powder	bide					ff and F 'idth (in			
Alloy	HS Tools	Tools		1/16	1/8	1/4	1/2	1	1½	2
Carpenter High Permeability "49" Carpenter Invar "36"	M48,T15	C2	30 80	.001	.001	.0015	.0015	.001	.0007	.0007
Hiperco® 50 A Kovar®										
Electrical Iron	M48,T15		89	.001	.0015	.002	.0015	.001	.001	.0007
Silicon Core Iron A & B		C6	250	.003	.0045	.006	.003	.0025	.0025	.0015
Silicon Core Iron	M48,T15		130	.002	.0025	.003	.0025	.0025	.0015	.0015
`A-FM & B-FM		C6	340	.004	.006	.008	.006	.005	.004	.003
Silicon Core Iron C	M48,T15		78	.001	.0015	.002	.0015	.001	.001	.0007
Onicon core non o		C6	225	.0035	.0045	.006	.003	.0025	.0025	.0015
430F & 430 FR	M48,T15		180	.002	.0025	.003	.0025	.002	.0015	.0001
Solenoid Quality		C6	350	.004	.0055	.007	.005	.004	.0035	.0035
Chrome Core® 8	M48,T15		117	.001	.001	.0015	.0015	.001	.001	.001
Chrome Core® 8		C6	390	.004	.0055	.007	.005	.004	.0035	.0035
Chrome Core 8-FM	M48,T15		180	.0015	.002	.0025	.0025	.002	.0015	.001
Official Core of the		C6	480	.004	.0055	.007	.005	.004	.0035	.0035
Chrome Core 12	M48,T15		117	.001	.001	.0015	.0015	.001	.001	.001
		C6	390	.004	.0055	.007	.005	.004	.0035	.0035
Chrome Core 12-FM	M48,T15		180	.0015	.002	.0025	.0025	.002	.0015	.001
		C6	480	.004	.0055	.007	.005	.004	.0035	.0035
Free-Cut Invar "36"®	M48,T15	- 00	78	.001	.0015	.002	.002	.0015	.001	.0001
		C2	220	.004	.0055	.007	.005	.004	.0035	.0035

Tool Steels Turning—Cut-Off and Form Tools

	Tool	Mtl.			F	eed (inc	h per re	volution)	
	Micro- Melt® Powder	Car- bide	Speed (fpm)				ff and F /idth (in			
Alloy	HS Tools	Tools		1/16	1/8	1/4	1/2	1	1½	2
						nealed				
No. 11 Special® Green Label	M48,T15		130	.0015	.002	.0025	.0025	.0015	.0015	.001
Green Laber		C6	350	.004	.005	.006	.005	.0035	.0035	.0025
Solar®	M48,T15	ı	ı 90 i	.0015	Anı .002	nealed .0025	.0025	.0015	.0015	.001
No. 481	14140,1110	C6	250	.004	.005	.006	.005	.0035	.0035	.0025
S7										
Stentor®		i			Anı	nealed	11		i	1
No. 484®	M48,T15		70	.001	.0015	.002	.0015	.001	.001	.0007
Vega® R.D.S.®		C6	205	.003	.0045	.006	.003	.0025	.0025	.0015
n.D.S.		Annealed								
No. 610®	M48,T15	l	54	.001	.001	.0015	.0015	.001	.0007	.0007
Hampden®		C6	145	.002	.002	.003	.0025	.0015	.0015	.0015
					Anı	nealed				
No. 882 No. 883®	M48,T15		78	.001	.0015	.002	.0015	.001	.001	.0007
No. 883° No. 345		C6	195	.003	.0045	.006	.003	.0025	.0025	.0015
T-K®		Annealed								
Thermowear®										
Speed Star®	M48,T15		70	.001	.001	.0015	.0015	.001	.0007	.0007
Ten Star®		C6	220	.002	.003	.0045	.003	.002	.0015	.0015
Star Zenith Star-Max®										
Star-iviax*					^	nealed				
Four Star		l			1	lealeu		l		1
Seven Star®	M48,T15		68	.001	.001	.0015	.0015	.001	.0007	.0007
Super Star®		C6	190	.002	.003	.0045	.003	.002	.0015	.0015
					Solutio	n Treate	d			
D4 10 A	l _		_	_	_	_	_	_	_	_
Pyrotool® A Pyrotool V		C2	95	.003	.005	.007	.004	.0035	.003	.003
1 ylotool v					А	ged	•	•	•	
		- 00	-	_	-	-	-	-	-	-
		C2	80	.003	.005	.007	.004	.003	.002	.0015
Durata al® 7		İ			Solutio	n Treated	i	İ	l	1
Pyrotool® 7 Pyrotool EX			-	_	-	-	-	-	-	-
Pyrotool M		C2	45	.003	.0045	.006	.004	.003	.002	.0015
Pyrotool W		I			, A	\ged 	İ	İ	l	ı
-	<u> </u>	C2	- 45	.003	.003	.0045	.003	.0025	.002	.001
		02	40	.003	.003	.0045	.003	.0023	.002	.001

High Temperature Alloys Drilling

					Feed (i	nch pe	r revolu	ution)		
Alloy	Tool Mtl.	Speed (fpm)		Nor	ninal H	lole Di	amete	r (inche	es)	
Alloy	IVILI.	(ірііі)	1/16	1/8	1/4	1/2	3/4	1	1½	2
NiMark® 250					Anne					
NiMark 300	M42	55	_	.003	.005		.009	.010	.013	.015
NiMark 350	IVI4Z	I 20 I		.002	Ag ⊢.003	j ed ∣.004	.004	.004	.004	.004
		20	_	.002	Anne		.004	.004	.004	.004
Stainless Type 410		65	.001	.003	.006		.013	.016	.021	.025
Greek Ascoloy AMS 5616	M42		.001	.000	Rc		.010	.010	.021	.020
AIVIS OI DO I		50	_	.002	.003	.005	.006	.007	.008	.009
19-9 DL		Solution Treated								
19-9 DX		25	_	.002	.004		.008	.010	l —	_
Pyromet® N-155	M42				Ag	ed				
Pyromet A-286 Pyromet V-57		20	_	.002	.004	.006	.008	.008	-	_
.,										
Pyromet® 718				S	olution	Treated				
Pyromet 625		20	_	.002	.003	.003	.004	_	_	_
Pyromet X750	N440				 Aa					
Pyromet 751 Pyromet 80A	M42	15		.002	.003	.003	.004			
Waspaloy		15	_	.002	.003	.003	.004	_		_
	Solution Treated									
Pyromet 41	M42	15	_	.002	.003	.003	.004	l —	I _	_
Pyromet 41	IVI4Z	.5								
_					olution	1	I.	ı		
Pyromet® 680	M42	15	_	.002	.003	.004	.004	_	-	_

Contact a Carpenter representative for alloy availability. Note: Hole quality improves using a drill point angle or tip of 150°.

Electronic Alloys Drilling

					Feed	(inch p	er revo	lution)		
All	Tool Mtl.	Speed (fpm)		No	minal	Hole D	iamet	er (inch	es)	
Alloy	IVILI.	(ірііі)	1/16	1/8	1/4	1/2	3/4	1	1½	2
Carpenter High Permeability "49"° Carpenter Invar "36"° Hiperco® 50 A Kovar®	M42	40	.001	.002	.004	.007	.008	.010	.012	.015
Electrical Iron Silicon Core Iron A & B	M42	70	.001	.002	.004	.007	.010	.012	.015	.018
Silicon Core Iron A-FM & B-FM	M42	80-85	.001	.003	.005	.010	.013	.016	.020	.025
Silicon Core Iron C	M42	50	.001	.002	.004	.007	.011	.013	.015	.017
430F & 430FR Solenoid Quality	M42	160	.001	.003	.006	.010	.014	.017	.021	.025
Chrome Core® 8	M1, M10	60-70	.001	.002	.004	.007	.010	.012	.015	.018
Chrome Core 8-FM	M1, M10	100-150	.001	.003	.006	.010	.014	.017	.021	.025
Chrome Core 12	M1, M10	60-70	.001	.002	.004	.007	.010	.012	.015	.018
Chrome Core 12-FM	M1, M10	100-150	.001	.003	.006	.010	.014	.017	.021	.025
Free-Cut Invar "36"®	M1, M10	50	.001	.002	.004	.007	.010	.012	.015	.018

Contact a Carpenter representative for alloy availability.

Note: Hole quality improves using a drill point angle or tip of 130°-140°.

Tool Steels Drilling

					Feed (i	nch pe	r revolu	ution)		
Alloy	Tool	Speed		Non	ninal F	lole Di	amete	r (inche	es)	
	Mtl.	(fpm)	1/16	1/8	1/4	1/2	3/4	1	1½	2
No. 11 Special®					Anne	aled				
Green Label	M42	95	.001	.002	.004	.007	.010	.012	.015	.018
Solar®					Anne	aled		•		
No. 481 S7	M42	55	.001	.002	.003	.007	.009	.011	.014	.016
Stentor®		Annealed								
No. 484® Vega® R.D.S.®	M42	45	.001	.001	.003	.005	.007	.008	.010	.012
No. 610®		Annealed								
Hampden®	M42	30	.001	.001	.003	.005	.007	.008	.010	.012
No. 882		Annealed								
No. 883® No. 345	M42	50	.001	.002	.003	.006	.008	.010	.011	.013
T-K®				'	Anne	aled			•	'
Thermowear® Speed Star® Ten Star® Star Zenith Star-Max®	M42	45	.001	.002	.003	.005	.007	.009	.011	.013
Four Star					Anne	aled	•		•	
Seven Star® Super Star®	M42	35	.001	.002	.003	.005	.007	.008	.011	.013
		25			olution			. 010		
Pyrotool® A	M42	25	_	.002	.004 Ag		800.	.010	-	_
Pyrotool V		20	_	.002	.004	.006	.008	.008	_	_
Pyrotool® 7				Sc	olution		ed			
Pyrotool EX	M42	20	_	.002	.003		.004	-	-	_
Pyrotool M Pyrotool W		15	-	.002	Ag .003	.003	.004	-	-	_

Contact a Carpenter representative for alloy availability.

Note: For Pyrotool alloys hole quality improves using a drill point angle or tip of 150°.

High Temperature Alloys Tapping

Alloy	Tool Material	Speed (fpm)							
	Α	nnealed							
NiMark® 250 NiMark 300	M1, M7, M10	20							
NiMark 350	A44 A47 A440 AVI I I	Aged							
	M1, M7, M10, Nitrided	5							
Chairless Torres 440	Annealed								
Stainless Type 410 Greek Ascoloy	M1, M7, M10	25							
AMS 5616		Rc 35							
	M1, M7, M10, Nitrided	15							
19-9 DL	Solut	ion Treated							
19-9 DX Pyromet® N-155	M1, M7, M10	15							
Pyromet A-286		Aged							
Pyromet V-57	M1, M7, M10, Nitrided	10							
Pyromet® 718	Solut	ion Treated							
Pyromet 625	M1, M7, M10	10							
Pyromet X750 Pyromet 751		Aged							
Pyromet 80A	M1, M7, M10, Nitrided	7							
Waspaloy									
Pyromet® 90	Solut	ion Treated							
Pyromet 41	M1, M7, M10, Nitrided	8							
	Solut	ion Treated							
	M1, M7, M10, Nitrided	10							

Electronic Alloys Tapping

Alloy	Tool Material	Speed (fpm)
Carpenter High Permeability "49" [®] Carpenter Invar "36" [®] Hiperco [®] 50 A Kovar [®]	M1, M7, M10	6-15
Electrical Iron Silicon Core Iron A & B	M1, M7, M10	15-20
Silicon Core Iron A-FM & B-FM	M1, M7, M10	25-30
Silicon Core Iron C	M1, M7, M10	10-15
430F & 430FR Solenoid Quality	M1, M7, M10	35-40
Chrome Core® 8	M1, M7, M10	20-45
Chrome Core 8-FM	M1, M7, M10	15-40
Chrome Core 12	M1, M7, M10	20-45
Chrome Core 12-FM	M1, M7, M10	15-40
Free-Cut Invar "36"®	M1, M7, M10	10-15

Threading, Die

	Tool	Speed (fpm)							
Alloy	Material	7 or less, tpi 8 to 15,		16 to 24, tpi	25 and up, tpi				
Tool Steels All Grades	M1, M2, M7, M10	8-12	12-18	18-25	20-30				
High Temperature Alloys All Grades	Annealed								
	M2, M7, M10	4-6	5-8	6-10	8-12				
	Aged								
	M42	3-4 3-5		4-8	5-10				
Electronic Alloys Nickel & Cobalt Grades	Non-FM								
	M42	5-10			15-20				
	FM								
	M1, M2, M7, M10, M42	5-12	8-15	10-20	15-25				
All other Electronic Grades	Non-FM								
	M1, M2, M7, M10	8-20	10-25	15-30	25-40				
	FM								
	M1, M2, M7, M10	10-20	15-25	20-35	25-40				

Tool Steels Tapping

Alloy	Tool Material	Speed (fpm)						
No. 11 Special®	Annealed M7, M10 40							
Green Label	IVI7, IVI IU	40						
Solar®	Annealed							
No. 481 S7	M7, M10	30						
Stentor®	Anne	aled						
No. 484 [®] Vega [®]	M7, M10	25						
R.D.S.®								
No. 610®	Anne M7, M10	aled I 15						
Hampden®	·							
No. 882	Annealed							
No. 883 [®] No. 345	M7, M10	30						
T-K®	Annealed							
Thermowear® Speed Star®								
Ten Star®	M7, M10	25						
Star Zenith Star-Max®								
Four Star	Annealed							
Seven Star®	M7, M10	20						
Super Star®								
Pyrotool® A Pyrotool V	Solution Treated							
	M7, M10 Age Nitrided	15 ed 10						
Pyrotool® 7	Solution	· ·						
Pyrotool® / Pyrotool EX	M7, M10	10						
Pyrotool M Pyrotool W	Age Nitrided	ed 7						
. ,								

High Temperature Alloys Milling, End—Peripheral

	Depth	Micro-Melt® Powder HS Tools				Carbide Tools							
Alloy	of Cut	Tool Mtl.	Speed (fpm)	Feed (inches per tooth)		Tabl	Speed (fpm)	Feed (inches per tooth)					
	(Inch-			Cutter Diam (inches)				Mtl	Cutter Diam (inches)				
	(11.1011		(ірііі)	1/4	1/2	3/4	1-2	IVILI	(гріті)	1/4	1/2	3/4	1-2
							Ar	neale	d				
NiMark® 250		M2,	_	_	_	_	_	C6	275	.001	.002	.004	.005
NiMark 300	.050	M7,	· '			'	٠.	Aged	Į.	'		'	
NiMark 350		M42	-	–	-	-	-	C6	75	–	.002	.003	.004
							Ar	neale	d				-
Stainless Type 410		M2,	-	-	-	-	-	Lb	345	.001	.002	.004	.006
Greek Ascoloy AMS 5616	.050	M7,		Rc 35									
AIVIS 5010		M42	-	-	-	_	-	C6	200	.001	.002	.003	.004
19-9 DL			Annealed										
19-9 DX			-	-	-	-	-	C2	120	.001	.002	.003	.004
Pyromet® N-155	.050	M42	Aged										
Pyromet A-286 Pyromet V-57			-	-	-	_	-	C2	80	.001	.002	.003	.004
•													
Pyromet® 718 Pyromet 625	Pyromet® 718					: 	Solut	ion Tr	eated 60	1.001	1.002	.003	.004
Pyromet X750						_		02	00	.001	.002	.003	.004
Pyromet 751	.050	M42											
Pyromet 80A Waspaloy			_	I —	I —	l —	l – [']	C2	50	.0015	.0015	.002	.003
													l
Pyromet® 90	.050	050 M42	Solution Treated										
Pyromet 41	.000	11172	_	_	_	_	_	C2	50	.001	.002	.003	.004
			Solution Treated										
	.050	M42	_	l _	_	l _	_	C2	70	.001	.002	.003	.004

Contact a Carpenter representative for alloy availability.

Note: Increase Speeds and Reduce Feeds for Lighter Cuts and Better Finish

Electronic Alloys Milling, End—Peripheral

	Depth	Mici	o-Melt®	Pow	der H	S Too	ls		Car	bide	Tools	s	
Alloy	of			Fee	d (inch	es per t	tooth)			Fee	d (inch	nes per	tooth)
7.1107	Cut (inch-	Tool Mtl.	Speed (fpm)	Cutt	ter Dia	am (in	ches)	Tool Mtl.	Speed (fpm)	Cutter Diam (inches)			
	(11011)	IVILI.	(ірііі)	1/4	1/2	3/4	1-2	IVILI.	(ірііі)	1/4	1/2	3/4	1-2
Carpenter High Permeability "49"° Carpenter Invar "36"° Hiperco° 50 A Kovar°	.050	M48, T15	42	.0005	.001	.002	.006	C6	200	.001	.002	.003	.004
Electrical Iron Silicon Core Iron A & B	.050	M48, T15	72	.002	.003	.005	.006	C6	300	.0025	.004	.006	.008
Silicon Core Iron A-FM & B-FM	.050	M48, T15	96	.002	.003	.005	.007	C6	350	.0025	.005	.007	.009
Silicon Core Iron C	.050	M48, T15	60	.002	.003	.005	.006	C6	300	.003	.004	.006	.007
430F & 430FR Solenoid Quality	.050	M48, T15	168	.001	.002	.004	.005	C6	400	.001	.002	.005	.007
Chrome Core® 8	.050	M48, T15	132	.001	.002	.003	.004	C6	350	.001	.002	.004	.006
Chrome Core 8-FM	.050	M48, T15	168	.002	.002	.004	.005	C6	400	.001	.002	.005	.007
Chrome Core 12	.050	M48, T15	132	.001	.002	.003	.004	C6	350	.001	.002	.004	.006
Chrome Core 12-FM	.050	M48, T15	168	.002	.002	.004	.005	C6	400	.001	.002	.005	.007
Free-Cut Invar "36"®	.050	M48, T15	100	.001	.002	.003	.004	C2	280	.001	.002	.004	.005

Contact a Carpenter representative for alloy availability.

Note: Increase Speeds and Reduce Feeds for Lighter Cuts and Better Finish

Tool Steels Milling, End—Peripheral

	Depth	Mici	ro-Melt®	Pow	der H	S Too	ols		Car	bide	Tool	s	
Alloy	of			Fee	d (inch	es per t	tooth)			Fee	d (inch	nes per	tooth)
Alloy	Cut (inch-	Tool Mtl.	Speed	Cut	ter Di	am (in	ches)	Tool Mtl.		Cut	ter D	iam (inches)
	(IIICII-	IVITI.	(fpm)	1/4	1/2	3/4	1-2	IVITI.	(fpm)	1/4	1/2	3/4	1-2
No. 11 Special®	.050	M48,		ı		1	An	neal	ed				1
Green Label	.000	T15	150	.002	.003	.005	.006	C6	400	.0025	.003	.005	.007
Solar® No. 481 S7	.050	M48, T15	100	.002	.003	.004	.005	neale C6	d 365	.002	.003	.005	.007
Stentor® No. 484® Vega® R.D.S.®	.050	M48, T15	90	.001	.002	.003	.004	neale C6	300	.0015	.0025	.004	.005
No. 610®							Δn	neal	ed he				
Hampden®	.050	M48, T15	65	.001	.002	.003	.004	C6	200	.0015	.0025	.004	.005
No. 882				1		1	An	neale	ed		i	i	1
No. 883 [®] No. 345	.050	M48, T15	95	.001	.002	.003	.004	C6	300	.0015	.0025	.004	.005
T-K®						l	Λn	neale	-d				1
Thermowear® Speed Star® Ten Star® Star Zenith Star-Max®	.050	M48, T15	84	.001	.002	.003	.004	C6	275	.0015	.0025	.004	.005
Four Star							An	neale	ed e				1
Seven Star® Super Star®	.050	M48, T15	72	.001	.002	.003	.004	C6	225	.0015	.0025	.004	.005
Pyrotool® A				-		S	· oluti	on Tr	eated	-	-	-	-
Pyrotool V	.050	M48,	_	_	_		—	C2		.001	.002	.003	.004
		T15					-	Aged					
			_		_	_	_	C2	80	.001	.002	.003	.004
Pyrotool® 7 Pyrotool EX Pyrotool M	.050	M48, T15	_	-	-	S	—	on Tr C2 Aged	eated 60	.001	.002	.003	.004
Pyrotool W		110	_	-	_	-	-	C2	50	.0015	.0015	.002	.003

Contact a Carpenter representative for alloy availability.

Note: Increase Speeds and Reduce Feeds for Lighter Cuts and Better Finish

High Temperature Alloys Sawing—Power Hack Saw

	F	Pitch (teet	h per inch)			
	Mate	erical Thic	Speed	Feed		
Alloy	Under 1/4	1/4 to 3/4	Strokes/ Minute	Inches/ Stroke		
All Grades	10	6	6	4	30-60	.003006

Electronic Alloys Sawing—Power Hack Saw

All Grades	10	6	6	4	40-75	.003006	

Tool Steels

Sawing—Power Hack Saw

No. 11 Special® Green Label	10	6	6	4	140	.006
Solar® No. 481 S7	10	6	6	4	70	.003
Stentor® No. 484® Vega® R.D.S.®	10	10	6	4	85	.003
No. 610 [®] Hampden [®]	10	10	6	4	55	.005
No. 882 No. 883 [®] No. 345	10	8	6	4	75	.003
T-K° Thermowear° Speed Star° Ten Star° Star Zenith Star-Max°	10	10	6	4	70	.006
Four Star Seven Star® Super Star®	10	10	6	4	60	.006
K-W	10	6	6	4	100	.006
M-50	10	10	6	4	90	.006
Plastic Mold Steels	10	6	6	4	115	.006
420 Plastic Mold Steel	10	10	6	4	110	.006
			Solution	Treated		
Pyrotool® A	10	10	6	4	50	.005
Pyrotool V			Αg	ged		
	10	10	6	4	40	.005
Pyrotool® 7				Treated		
Pyrotool EX	10	10	6	4	35	.004
Pyrotool M Pyrotool W	_	-	—	ged —	-	-

High Temperature Alloys Broaching

	Micro-	Melt [®] Powder High S	peed Tools
Alloy	Tool Material	Speed (fpm)	Chip Load (inches per tooth)
NiMark® 250		Annealed	
NiMark 300 NiMark 350	M48, T15	15	.002
Otalista a Tara 440		Annealed	•
Stainless Type 410 Greek Ascoloy		20	.004
AMS 5616	M48, T15	Rc 35	
		10	.002
19-9 DL		Solution Treated	
19-9 DX		12	.002
Pyromet® N-155 Pyromet A-286	M48, T15	Aged	
Pyromet V-57		10	.002
Pyromet® 718		Solution Treated	+
Pyromet 625 Pyromet X750		8	.002
Pyromet 751	M48, T15	Aged	ı
Pyromet 80A Waspaloy		6	.002
Pyromet® 90 Pyromet 41		Solution Treated	1
ryioillet 41	M48, T15	8	.002
		Aged	
		6	.002
		Solution Treated	
	M48, T15	10	.002

Electronic Alloys Broaching

	Micro-N	Micro-Melt® Powder High Speed Tools								
Alloy	Tool Material									
		Annealed								
FM Grades	M48, T15	18-30	.002							
		Annealed								
All Other Grades	M48, T15	9.6-14.4	.002							

Tool Steels Broaching

	Micro-	Melt [®] Powder High Sp	eed Tools
Alloy	Tool Material	Speed (fpm)	Chip Load (inches per tooth)
No. 11 Special®		Annealed	
Green Label	M48, T15	20	.003
Solar®		Annealed	•
No. 481 S7	M48, T15	15	.003
Stentor®		Annealed	•
No. 484® Vega® R.D.S.®	M48, T15	15	.003
No. 610®		Annealed	
Hampden®	M48, T15	10	.002
No. 882		Annealed	
No. 883® No. 345	M48, T15	20	.003
T-K®		Annealed	1
Thermowear® Speed Star® Ten Star® Star Zenith Star-Max®	M48, T15	10	.002
Four Star		Annealed	1
Seven Star® Super Star®	M48, T15	5	.002
		Solution Treated	1
Pyrotool® A	M48, T15	12	.002
Pyrotool V	10146, 1 15	Aged	•
		10	.002
Pyrotool® 7		Solution Treated	1 000
Pyrotool EX Pyrotool M	M48, T15	8	.002
Pyrotool W		Aged	.002

High Temperature Alloys Reaming

		-Melt® HS Tools		rbide (inserts)					olution) (inches)	
Alloy	Tool Mtl.	Speed (fpm)	Tool Mtl.	Speed (fpm)	1/8	1/4	1/2	1	1½	2
1	141611	(1)		(10111)	Annea		1/2	•	1 /2	
NiMark [®] 250 NiMark 300	M48, T15	55	C2	160	.003 Age	.005	800.	.012	.015	.018
NiMark 350	M48, T15	10	C2	50	.001	.001	.001	.001	.001	.001
Stainless Type 410					Annea	aled			•	•
Greek Ascoloy	M48, T15	90	C2	275	.003	.006	.010	.014	.018	.022
AMS 5616					Rc 3	35				
	M48, T15	30	C2	120	.001	.001	.001	.001	.001	.001
19-9 DL	l '			Sol	ution	Treated	t			,
19-9 DX	M48, T15	30	C2	100	.003	.006	.010	.012	.014	.016
Pyromet® N-155 Pyromet A-286				I	Age	d	I	1	l	l
Pyromet V-57	M48, T15	25	C2	80	.003	.006	.010	.012	.014	.016
Pyromet® 718				Sol	ution	Treate	d		-	-
Pyromet 625 Pyromet X750	M48, T15	15	C2	60	.002	.006	.008	.010	.012	.014
Pyromet 751 Pyromet 80A					Age	d				
Waspaloy	M48, T15	12	C2	50	.002	.006	.008	.010	.012	.014
Pyromet® 90				Sol	ution	Treated	i			
Pyromet 41	M48, T15	20	C2	60	.002	.004	.006	.008	.010	.012
					Age					
	M48, T15	15	C2	40	.002	.004	.006	.008	.010	.012
Pyromet® 680				Sol	ution	Treated	ł			
	M48, T15	20	C2	70	.002	.006	.008	.010	.012	.014

Electronic Alloys Reaming

		-Melt® HS Tools	Carbide Tools (inserts)			olution)				
	Tool	Speed	Tool	Speed	Reamer Diameter (inches)					
Alloy	Mtl.	(fpm)	Mtl.	(fpm)	1/8	1/4	1/2	1	1½	2
FM Grades	M48, T15	108-180	C2	275	.002	.006	.008	.010	.012	.014
All Other Grades	M48, T15	36-72	C2	70	.002	.006	.008	.010	.012	.014

Tool Steels Reaming

		-Melt [®] HS Tools		rbide (inserts)			(inches		olution) (inches)	
Alloy	Tool Mtl.	Speed (fpm)	Tool Mtl.	Speed (fpm)	1/8	1/4	1/2	1	1½	2
No. 11 Special®					Annea	aled				
Green Label	M48, T15	100	C2	300	.003	.005	.007	.011	.014	.017
Solar®					Annea	aled				
No. 481 S7	M48, T15	85	C2	250	.003	.005	.008	.011	.015	.018
Stentor®					Annea	aled				
Nos. 484® Vega® R.D.S.®	M48, T15	45	C2	150	.003	.005	.008	.011	.015	.018
No. 610®					Annea	aled				
Hampden®	M48, T15	25	C2	80	.002	.003	.005	.007	.010	.012
No. 882		Annealed								
No. 883® No. 345	M48, T15	55	C2	175	.003	.005	.008	.012	.015	.018
T-K®					Annea	led				
Thermowear® Speed Star® Ten Star® Star Zenith Star-Max®	M48, T15	45	C2	150	.003	.005	.008	.012	.015	.018
Four Star					Annea	aled				
Seven Star® Super Star®	M48, T15	30	C2	100	.003	.005	.008	.012	.015	.018
					ution	Treated	1			
Pyrotool® A Pyrotool V	M48, T15	30	C2	100	.003 Age		.010	.012	.014	.016
	M48, T15	25	C2	80	.003	.006	.010	.012	.014	.016
Pyrotool® 7				Sol	ution	Treated	ı			
Pyrotool EX Pyrotool M	M48, T15	20	C2	60	.002	.006	.008	.010	.012	.014
Pyrotool W	M48, T15	15	C2	50	.002	.006	.008	.010	.012	.014

CUTTING FLUIDS

Cutting Fluids

Cutting fluids serve several purposes in machining. During machining operations, both high temperature and pressure are encountered in the tool-workpiece interface. The edge of the cutting tool heats up as it removes metal chips from the workpiece due to friction and deformation of the metal. The heat generated this way transfers to the chips. These chips then may weld to the tool under the high temperature and pressure. The optimal cutting fluid for a specific operation will remove excess heat from the cutting edge and lubricate the tool to reduce friction. These actions will prevent welding of the chips to the tool, scuffing on the surface of the workpiece and provide extended tool life and improved part finish.

Stainless Steel Cutting Oils

Modern technology stainless steel cutting oils are comprised of premium quality, heavily dewaxed parraffinic base stocks with active extreme pressure (E.P.) and natural and synthetic fatty oil additives. Some of the additive packages available in cutting oils today are keyed in for specific operations or for specific stainless steel grades. Due to the complexity of these new additive materials, stainless steel cutting oils tend to be more expensive than cutting oils used for various other metals.

The following suggestions should be kept in mind when using modern technology stainless steel cutting oils for various operations:

 The most effective E.P. additives for stainless steel machining are chlorinated compounds. Other materials, such as sulfurized fatty oils, phosphorus additives and various esters may also be used for formulating oils for specific operations.

Data provided by Clark Oil and Chemical, Cleveland, Ohio

- 2. In high speed, light feed automatic screw machines, a lighter viscosity oil with fewer additives is sufficient especially when working with free-machining alloys. In these machines the function of the oil is predominantly to remove heat from the tool-workpiece interface and to provide lubricity to the tool. This in turn will increase tool life.
- Machines running at normal or average speed or performing operations, which include threading, tapping, drilling and milling, should use heavier viscosity oils with a higher percentage of E.P. additives in their formulations.
- 4. For bolt threading, nut tapping, pipe threading and broaching, addition of a sulfurized compound to the cutting oil formulation, already containing a chlorinated additive, is recommended. It is not advised however, to use sulfurized oils on high nickel alloys.
- 5. As a general rule, when machining larger diameter parts, a cutting oil with active sulfochlorinated E.P. additives should be used. When machining smaller diameter parts, the viscosity of the cutting oil should be below 200 SUS at 100°F.
- 6. When starting a new stainless steel job, it is important to remember that the more difficult the job is, the more highly compounded the cutting oil should be. This does not only mean that for difficult jobs the oil should contain more additives, but also that the oil should contain additives specifically designed for the operation. It is important to work with your oil supplier to maximize the effectiveness of the cutting oil as it relates to feeds and speeds, type of stainless steel being machined, critical tooling and part finish. The oil supplier can accomplish this by fine tuning their product to achieve maximum performance in specific applications.

Emulsifiable Fluids

Water-soluble cutting fluids may also be used on stainless steels, especially in operations where greater cooling capability is necessary, such as cutting with carbide tooling at high speeds. Water-soluble oils for stainless steel machining should contain similar polar E.P. additives that are used in straight stainless steel cutting oils. Water emulsifiable fluids may only be used in machines where mixing of the cutting fluid and the lubricating oil will not happen. Many water-soluble cutting fluids no matter how well formulated may not provide the same benefits as straight oil products would in severe cutting operations.

Using water-soluble stainless steel cutting fluids may in some cases result in better machined surface finish and better heat removal ability from the tool-workpiece interface. The use of water-soluble cutting fluids is also more economical than using a straight oil product.

General Practices

Since the main purpose of cutting fluids, being either straight or soluble oils, is to remove heat from and to lubricate the tool-workpiece interface, delivery of the right amount of fluid in this area is very critical. The size and form of the nozzle through which the fluid is delivered is of paramount importance. For the cutting fluid to be effective, the right volume of it must be delivered to the tool-workpiece interface with the appropriate pressure.

Cutting fluids also play an important role in chip removal. This is another reason to have the fluid nozzle spray in the right direction with the appropriate pressure. If the cutting fluid is not applied to the proper area at the tool-workpiece interface, and not in the correct amount, the fluid will heat up and lose its ability to carry heat away. This in turn will cause degradation of part finish and decrease of tool life. In general, the temperature of the cutting fluid should not exceed 140°F. If the cutting fluid gets too hot, the flow and rate of delivery of it should be adjusted at the nozzle. Some sumps (usually small ones) may use chillers to cool the cutting fluid. Make sure chillers work

properly if they are installed on the machine. When using water-soluble cutting fluids, make sure that the machine sumps are always full of the fluid to eliminate the problem of heat build up in the fluid. Water-soluble oils will lose water due to evaporation over time. This water must be replenished to keep the proper concentration of coolant in the machine and to eliminate excessive heat buildup in the sump.

Fig. 10. Examples of correct and incorrect flow of cutting fluid.

Another important consideration is the cleanliness of the cutting fluid. Swarf, chips, grit and dust enter the cutting fluid, and if delivered to the tool-workpiece interface, can ruin the finish of the workpiece. Therefore it is highly recommended to filter and periodically change the cutting fluid in the machine sumps. Before introducing new product to the tank, however, the tank and all pipes and pumps must be properly cleaned and flushed. With soluble cutting fluids other precautions should also be taken. With these fluids, the longer the contact time of the emulsion with the swarf and chips, the faster the emulsion degrades. Swarf and chips can act as a filter, to filter out components from the emulsion. Swarf and chips attract dust and allow bacteria to multiply more quickly. This can further degrade the emulsion. Make sure swarf and dust are filtered out quickly and effectively from the soluble cutting fluid systems. Metal chips should be removed from the emulsion continuously to minimize the chips that are present in the machine sump.

Suggested Guidelines for Cutting Fluid Selection

	Aus	Ferritic and	
	Free Machining	Non-free Ma- chining	Martensitic
Turning Milling Reaming Drilling	D,M,N	F,L	D,M,N
Deep Hole Drilling Gun Drilling Trepanning	A2,L	A2	A2,L
Tapping Threading Thread Chasing	С	L,D	В
Form Tapping Thread Rolling	E,L	B,E	E,L
Vertical Broaching	L	L,A	L
Horizontal Broaching	А	А	А
Sawing	L	Ĺ	L
Centerless Grinding	0	O,L	0

Note: The table contains general suggested guidelines or starting points for cutting fluid selection. It is advisable to contact your oil manufacturer or distributor for more information.

Code Cutting Fluids

- A Heavy duty, active sulfur, fats and chlorinated compounds Heavy anti-weld properties
- A2 Heavy duty, active sulfur, fats and chlorinated compounds Heavy anti-weld properties in lighter viscosity under 120 SUS @ 100°F
- B Heavy duty, active sulfur, fats and chlorinated compounds Heavy anti-weld properties with viscosity 190/220 SUS @ 100°F
- Heavy duty, active sulfur, fats and chlorinated compounds 150/170 SUS @ 100°F
- D Chlorine free, non-corrosive, heavily fortified sulfurized fatty acids and extreme pressure additives
- E High extreme pressure, heavily fortified for anti-weld and load carrying additions with active sulfur
- F Heavy duty, inactive sulfur, fats and chlorinated compounds Heavy anti-weld properties with viscosity 150/170 SUS @ 100°F
- L Super heavy duty soluble oil with high extreme pressure additives
- M General purpose highly fortified synthetic with no chlorine or sulfur, with biostable, low foam good rust preventative additives
- N General purpose highly fortified semi-synthetic with extreme pressure additives
- O Heavy duty synthetic (made for centerless grinding)

Data provided by Clark Oil and Chemical, Cleveland, Ohio


CLEANING AND PASSIVATING

Cleaning Before Heat Treating

Parts made from martensitic stainless steels or precipitation-hardenable alloys may be hardened or solution treated at high temperatures after machining. In such cases, the parts must be thoroughly cleaned with a degreaser or cleanser to remove any traces of cutting fluid before heat treating. Otherwise, cutting fluid remaining on the parts will cause excessive oxidation. This can result in undersized parts with a pitted finish after the scale is removed by acid or abrasive methods. If cutting fluids are allowed to remain on parts that are bright hardened, as in a vacuum furnace or protective atmosphere, surface carburization may result, leading to a loss of corrosion resistance.

Passivating

To ensure that machined parts have optimum corrosion resistance, they should be properly passivated. The primary purpose of passivation is to remove surface contamination, such as iron particles from cutting tools, that can form rust or act as initiation sites for corrosion. In addition, passivation can remove sulfides exposed on the surface of free-machining alloys, which also may act as initiation sites for corrosion.

The parts at left possess clean, shiny, corrosion-resistant surfaces after proper passivating. "Flash attack" on the parts at right resulted from using a contaminated passivating solution.

The first step in passivation is to thoroughly clean the parts with a degreaser or cleanser to remove dirt and cutting fluid. This will prevent contamination of the passivation bath and avoid reactions that may lead to "flash attack," or a heavily etched or darkened surface. After the parts have been cleaned, they should be passivated. Traditional nitric acid passivation practices are described below.

Nitric Acid Passivation of Stainless Steels						
Grades	Passivation Practice					
— Chromium–Nickel Grades (300 Series) — Grades with 17% Chromium or more (except 440 Series)	20% by vol. nitric acid at 120/140°F (49/60°C) for 30 minutes					
— Straight Chromium Grades (12-14% Chromium) — High Carbon–High Chromium Grades (440 Series) — Precipitation Hardening Stainless	20% by vol. nitric acid + 3oz. per gallon (22 g/liter) sodium dichromate at 120/140°F (49/60°C) for 30 minutes OR 50% by vol. nitric acid at 120/140°F (49/60°C) for 30 minutes					

Passivation for Free-Machining Stainless Steels Including AISI Types 420F, 430F, 440F, 203, 182-FM and Carpenter Project 70+® Types 303 and 416

- 1.5% by wt. sodium hydroxide at 160/180°F (71/82°C) for 30 minutes.
- 2. Water rinse.
- 3. 20% by vol. nitric acid + 3 oz. per gal (22 g/liter) sodium dichromate at 120/140°F (49/60°C) for 30 minutes.
- 4 Water rinse
- 5. 5% by wt. sodium hydroxide at 160/180°F (71/82°C) for 30 minutes.
- 6. Water rinse.

The A-A-A (alkaline-acid-alkaline) method outlined for free-machining alloys illustrated in the second table prevents corrosion that may otherwise occur from residual acid trapped in pits remaining after the free-machining inclusions have been removed by the passivation bath.

The following points should be noted:

- 1. Passivation is not a scale-removal method. Any particles of oxide or heat tint must be removed before passivating.
- 2. Water used for passivation baths should have a relatively low chloride content (less than several hundred ppm, preferably less than 50 ppm).

- 3. Baths should be replaced on a regular schedule to avoid a loss in passivating potential that can result in flash attack.
- 4. The bath should be maintained at the proper temperature, since lower temperatures may allow localized attack.
- 5. Carburized or nitrided parts should not be passivated, since their reduced corrosion resistance may result in attack in the bath.
- 6. High-carbon martensitic alloys should be in a hardened condition before passivating, in order to provide sufficient corrosion resistance.

The left cone is an example of the improved resistance of free-machining stainless steel when passivated using the alkaline-acid-alkaline method. Conventional passivation is shown at right. Both samples were exposed to salt spay.

Citric acid passivation treatments are becoming more popular for fabricators who prefer avoiding the use of mineral acids or solutions containing sodium dichromate. Citric acid passivation treatments found useful for several grades of stainless steel are summarized in the following table:

Citric Acid Passivation of Stainless Steels*						
Grades	Passivation Practice					
Type 316/316L	40					
Project 70+® Type 316/316L Stainless	10 wt. % citric acid, 150°F (66°C), 30 minutes					
Type 304/304L Project 70+ Type 304/304L Stainless	same as above					
Custom Flo 302HQ Type 305						
Nitrogen–Strengthened Austenitics	same as above					
Type 430	same as above					
17Cr-4Ni						
Project 70+ Custom 630 Stainless	same as above					
15Cr-5Ni						
Project 70+ 15Cr-5Ni Stainless	same as above					
Custom 465® Stainless	same as above					
Type 409Cb	10 wt. % citric acid, 180/200°F (82/93°C),					
	30 minutes; after passivation and water rinse,					
	neutralize in 5 wt. % sodium hydroxide,					
	170°F (77°C), 30 minutes					
Type 303	10 wt. % citric acid, 150°F (66°C),					
Project 70+Type 303 Stainless	30 minutes; after passivation and water rinse,					
	neutralize in 5 wt. % sodium hydroxide,					
	170°F (77°C), 30 minutes					
Type 410	10 wt. % citric acid, 120/130°F (49/54°C),					
Type 420	30 minutes; after passivation and water rinse,					
TrimRite® Stainless	neutralize in 5 wt. % sodium hydroxide,					
	170°F (77°C), 30 minutes					
Chrome Core® 18-FM Stainless	10 wt. % citric acid, 100°F (38°C),					
	30 minutes; after passivation and water rinse,					
	neutralize in 5 wt. % sodium hydroxide,					
T 40001 FM	170°F (77°C), 30 minutes					
Type 409Cb-FM	10 wt. % citric acid (adjusted to pH 5 with					
	sodium hydroxide), 110°F (43°C), 30 minutes;					
	after passivation and water rinse,					
	neutralize in 5 wt. % sodium hydroxide,					
Type 416	170°F (77°C), 30 minutes					
Project 70+ Type 416 Stainless	same as above					

^{*}Parts should be thoroughly cleaned and degreased prior to citric or nitric acid passivation. Parts must be water rinsed after immersion in acid and sodium hydroxide baths.

It is important to note that a careful balance of time, temperature and concentration is critical to avoid "flash attack" as previously described.

The ultimate choice of a passivation treatment will depend upon the imposed acceptance criteria. For more information, refer to ASTM A967, "Standard Specification of Chemical Passivation Treatments for Stainless Steel Parts." You can access the specification at www.astm.org.

NONTRADITIONAL MACHINING OPERATIONS

While the majority of stainless steels are machined using conventional techniques, nontraditional techniques are used when justifiable. Such justification involves cost savings when machining alloys at the extremes of toughness or hardness, or when machining intricate shapes. The following sections briefly describe some of the nontraditional machining techniques which have been applied successfully to stainless steels.

Abrasive Jet Machining

In abrasive jet machining, material removal is accomplished using a controlled, high-velocity stream of gas containing abrasive. The stream is directed at the workpiece using a movable nozzle. The process is not meant for bulk material removal; rather, it is used primarily for deburring or cleaning in finishing operations. It may also be used to etch a surface to a matte finish. Although the process is best suited for hard materials, it has been used to deburr alloys such as Type 303.

One advantage of using abrasive jet machining is the fact that it is not a thermal process. Thus, critical dimensions of parts may be adjusted slightly after final heat treatment. However, the resultant matte finish may be undesirable. The following table shows the machined surface finish of a soft, austenitic stainless steel processed with abrasive jet machining. Another disadvantage is the possible loss of edge sharpness when deburring.

Surface Roughness for Annealed Type 316 in Abrasive Jet Machining

Abrasive	Grit size		Surface Roug	ghness Ra
Abiusive	μm	μin	μm	μin
Aluminum oxide	10	400	0.20-0.50	8-20
	25	1000	0.25-0.53	10-21
	50	2000	0.38-0.96	15-38
Silicon carbide	20	800	0.30-0.50	12-20
	50	2000	0.43-0.86	17-34
Glass beads	50	2000	0.30-0.96	12-38

Starting surface had been ground to 0.47 µm Ra (18.5 µin)

Source: "Abrasive Jet Machining - AJM," <u>Machining Data Handbook</u>, Vol. 2, Metcut Res. Assoc., 1980, p. 10-17

For further information, consult the following:

"Abrasive Jet Machining - AJM," Machining Data Handbook, Vol. 2, Metcut Res. Assoc., 1980, p. 10-15 to 10-20.

T. C. Roberts, "Abrasive Jet Machining - Nontraditional Deburring,"

Nontraditional Machining, ASM, 1986, p. 105-110.

Abrasive Water Jet Machining

Abrasive water jet machining utilizes a high-velocity stream of water containing an abrasive to cut the workpiece. It provides specific advantages over other types of cutting, which must be considered on an application-by-application basis. It is more versatile than a saw, being able to cut complex shapes with a small kerf. Thicker materials can be cut than with a laser. It is a slower process than plasma arc machining; however, since it is not a thermal process, it does not cause metallurgical changes such as a heat-affected zone, or introduce residual stresses. This may be a particular advantage with fully heat-treated materials. Cutting rates for some allows are shown in the following table.

Cutting Rates for Stainless Steels in Abrasive Water Jet Machining

Alloy	Thickness		Cutting	Rate
Alloy	mm	in.	mm/min.	in/min.
15Cr-5Ni ^(a) *	3	0.13	229-381	9-15
15Cr-5Ni ^(a) *	64	2.50	13-25	0.5-1
Type 316 ^(a)	76 (dia.)	3 (dia.)	13-51	0.5-2
Custom 630 ^(b)	25	1	51	2

^(a) 276-345 MPa (40-50 ksi) pressure with 60 mesh garnet.

Sources: B. L. Swartz, "Principles and Applications of Water and Abrasive Jet Cutting,"

⁽b) 207 MPa (30 ksi) pressure with 60 mesh garnet. (a)

High Productivity Machining: Materials and Processes, ASM, 1985, p.295; A. L. Hitchcock, "Vote of Confidence for Abrasive Wateriet Cutting," Metal Progress, July 1986, p. 34.

For further information, consult the following:

A. Ansorge, "Fluid Jet Principles and Applications," <u>Nontraditional Machining</u>, ASM, 1986, p. 35-41.

B. L. Schwartz, "Principles and Applications of Water and Abrasive Jet Cutting," <u>High Productivity Machining: Materials and Processes</u>, ASM, 1985, p. 291-298.

A. L. Hitchcox, "Vote of Confidence for Abrasive Waterjet Cutting," <u>Metal Progress</u>, July 1986, p. 33-42.

D. Daniels, "AWJ Cutting, A New Tool for Metal Fabricators," <u>Metal Stamping</u>, September 1986, p. 3-6.

R. K. Mosavi, "Comparing Laser and Waterjet Cutting," <u>Lasers and Optronics</u>, Vol. 6 (No. 7), July 1987, p. 65-68.

Electrochemical Machining

In electrochemical machining, metal is removed from an anodic workpiece separated from a cathodic tool by flowing electrolyte in a process that is essentially the reverse of plating. Electrochemical machining is well-suited for hard or tough materials requiring machining into complex shapes, including those with holes. Machined surface finish is excellent and burrs are not formed. In addition, fully heat-treated materials can be machined without metallurgical changes or distortion.

Compared with electrical discharge machining, electrochemical machining proceeds at a much faster rate without a recast layer or heat-affected zone. On the other hand, electrolytes used can be corrosive, all parameters must be closely controlled during the process for optimum results, and electrode (tool) design may require significant manipulation initially to achieve complex shapes with close tolerances. However, once manufactured, the tools do not wear during the machining process.

The following table shows electrolytes used for several alloys.

Electrolytes Used for Srainless Steels in Electrochemical Machining

Alloy	Electrolyte	Concen	Temp. at inlet		
7 tino y		g/L	lb./gal.	°C	°F
Type 410	NaCl or	96	0.8	27	80
	NaCI+NaNO₃	192-216	1.6-1.8	46	115
Type 302	NaCI+NaF	30-32.4	0.25-0.27	38	100
Type 303	NaCI+NaNO₃	120-140	1.0-1.17	21	70
Type 316	NaCl	120	1	38	100
Custom 630	NaCl or	96-120	0.8-1	27	80
	NaNO₃	240 (60-480)	2 (0.25-4)	38	100
Pyromet®A-286	NaNO ₃	240	2.0	38	100

Source: "Electrochemical Machining - ECM," Machining Data Handbook, Vol. 2,

Metcut Res. Assoc., 1980, p. 11-38, 11-39.

The following table shows theoretical removal rates for two alloys.

Material Removal Rates for Electrochemical Machining

Alloy	Theoretical Removal Rate ^(a) for 155 A/cm² (1000 A/in²)			
	cm³/min.	in.³/min.		
17Cr-4Ni Pyromet®A-286	2.02 1.92	0.123 0.117		

⁽a) Assuming 100% current efficiency.

Source: "Electrochemical Machining - ECM," Machining Data Handbook, Vol. 2,

Metcut Res. Assoc., 1980, p. 11-34.

The following table shows typical parameters for machining 17Cr-4Ni.

Parameters for Electrochemical Machining of Solution-Treated 17Cr-4Ni

Electrolyte	Concentration		Minimum	Metal removal constant (k)*		
Licotrolyte	g/L	lb./gal.	starting Voltage(∆E)	cm³/A-min. x 10 ⁻³	in.³/A-min. x 10 ⁻⁵	
NaNO ₃	270	2.3	3.6	1.41	8.6	

*Used for estimating current:

 $I = \frac{A_W V_f}{k}$

I = current, amperes

Aw = area machined, cm2 (in2)

 V_t = feed rate cm/min. (in./min.)

k = metal removal constant

Source: "Electrochemical Machining - ECM," Machining Data Handbook, Vol. 2, Metcut Res. Assoc., 1980, p. 11-53.

Variations of electrochemical machining include electro-stream machining and shaped tube electrolytic machining. Electro-stream machining is intended for drilling of multiple, very small-diameter holes, while shaped tube electrolytic machining is intended for drilling multiple, small, very deep, round or shaped holes. Alloys such as Types 304, 316, 321 and 414 have been drilled using these techniques. The electrolyte used for drilling is a sulfuric acid solution, since electrolytes containing salts will form a sludge which could cause blockages in fine or deep holes.

For further information, consult the following:

- "Electrochemical Machining ECM," <u>Machining Data Handbook</u>, Vol. 2, Metcut Res. Assoc., 1980, p. 11-25 to 11-62.
- B. Kellock, "Have a Ball with a Cinderella Process!," <u>Machinery and Production Engineering</u>, May 19, 1982, p. 40-46.
- "Electro-Stream ES," <u>Machining Data Handbook</u>, Vol. 2, Metcut Res. Assoc., 1980, p. 11-69 to 11-70.
- "Shaped Tube Electrolytic Machining STEM," Machining Data Handbook, Vol. 2, Metcut Res. Assoc., 1980, p. 11-71 to 11-75.

Electrochemical Grinding

Electrochemical grinding is another variant of electrochemical machining, in which a conductive, abrasive wheel removes any films formed on the workpiece during the process. Because only a small part of the metal removal is by abrasive action, wheel life is significantly prolonged, without the need for frequent redressing. This is a particular advantage in form grinding. Material removal rates are higher than in conventional grinding, particularly for hard alloys, without distortion or metallurgical changes in the parts. Burrs are eliminated and fine surface finishes are obtainable. The following table shows parameters for stainless steels in general and Pyromet® Alloy A-286 in particular.

For further information, consult the following:

"Electrochemical Grinding - ECG," <u>Machining Data Handbook</u>, Vol. 2, Metcut Res. Assoc., 1980 p. 11-9 to 11-22.

R. E. Phillips, "What is Electrochemical Grinding and How Does It Work," <u>Nontraditional Machining</u>, ASM, 1986, p. 65-70.

Parameters for Electrochemical Grinding

			Concentration		Maximum current density ^(a)	
Alloy	Wheel	Electrolyte	g/L	lb./gal.	A/cm²	a/in.²
Stainless steel	aluminum oxide	NaNO ₃	180-200	1.5-1.7	78	500
Pyromet® A-286	aluminum oxide	NaNO ₃	120-140	1.0-1.2	116	750

⁽a) May be limited by possibility of overheating the workpiece. Source: "Electrochemical Grinding - ECG," <u>Machining Data Handbook</u>, Vol. 2, Metcut Res. Assoc., 1980, p. 11-13.

Electrical Discharge Machining

In electrical discharge machining, material is removed by sparks generated by a pulsating current flow between the workpiece and a shaped electrode. The workpiece and electrode (tool) are separated by a flowing dielectric fluid, such as oil. Electrical discharge machining is not affected by the hardness or toughness of the material and is well-suited for machining a variety of complex or irregular shapes, including holes. A disadvantage is the presence of a recast layer and heat-affected zone. These may have to be removed for critical applications. Data indicate that fatigue life of an alloy such as Type 410 can be significantly reduced, compared to conventionally machined material.

Electrical discharge sawing is a variant of electrical discharge machining and uses either a moving metal band or disc as the cutting electrode. High cutting rates can be obtained for stainless steels: $263 \, \text{in}^2/\text{min}$. (1700 cm²/min.) for a circular arc saw. Cutting rates for electrical discharge band saws are significantly lower.

For further information, consult the following:

"Electrical Discharge Machining - EDM," <u>Machining Data Handbook</u>, Vol.2, Metcut Res. Assoc., 1980, p. 12-15 to 12-46.

M. Field, et.al., "The Surface Effects Produced in Nonconventional Metal Removal - Comparison with Conventional Machining Techniques," <u>Metals Engineering Quarterly</u>, August 1966, p. 32-45.

"Electrical Discharge Sawing - EDS," <u>Machining Data Handbook</u>, Vol. 2, Metcut Res. Assoc., 1980, p. 12-47 to 12-48.

Electron Beam Machining

Electron beam machining uses a focused stream of electrons to remove material by melting and vaporization in a vacuum. Electron beam machining may be used for cutting thin materials, drilling fine holes or machining narrow slots with a high degree of precision. As with electrical discharge machining, a thin recast layer and heat- affected zone will be present and may have to be removed for critical applications. Operating parameters for drilling holes are shown in the table at the top of page 129.

Parameters Used to Drill Holes With Electron Beam Machining

Workpiece Thickness Di		Thickness Diameter		Dri ll ing Time	Accel- erating Voltage	Average Beam Current	Pulse Width	Pulse Frequency
mm	in.	mm	in.		kV	μΑ	μs	Hz
Ferri				tic/Marte	ensitic Allo	ys		
0.25	0.010	0.013	0.0005	<1	130	60	4	3000
		1	<u>'</u>	Stainle	ss Steels			I
1.0 2.0	0.040 0.080	0.13 0.13	0.005 0.005	<1 10	140 140	100 100	80 80	50 50
2.5 6.4	0.100 0.250	0.13 0.5-1.0	0.005 0.020-0.040	10 180	140 145	100 4000	80 2100	50 12.5

Source: "Electron Beam Machining - EBM," Machining Data Handbook, Vol. 2,

Metcut Res. Assoc., 1980, p. 12-7, 12-10.

Operating parameters for cutting slots are shown in the following table.

Parameters Used for Cutting Slots With Electron Beam Machining

l	Workpiece Thickness mm in.		Dimonoiono		Rate of Cut		erating	Average Beam Current µA	Pulse Width	
	111111	1111.	111111	111.	mm	ın.	KV	μΑ	μs	ПZ
	1.57	0.062	0.020 x 6.35	0.008 x 0.250	5 n	nin.	140	120	80	50
().18	0.007	0.10 wide	0.004 wide	50 mm/mi	n. 2 in/min.	130	50	80	50
(0.05	0.002	0.05 wide	0.002 wide	100 mm/mi	in. 4 in/min.	130	20	4	50

Source: "Electron Beam Machining - EBM," Machining Data Handbook, Vol. 2,

Metcut Res. Assoc., 1980, p.12-8.

For further information, consult the following:

"Electron Beam Machining - EBM," <u>Machining Data Handbook</u>, Vol.2, Metcut Res. Assoc., 1980, p. 12-3 to 12-10.

Laser Beam Machining

In laser beam machining, a focused beam of high-energy coherent light removes material by melting and vaporization. Unlike electron beam machining, a vacuum is not necessary. Laser beam machining can be used for high-speed drilling of small-diameter holes or cutting of thin material into complex shapes, including contour cuts. Stainless steels may be cut at thicknesses of up to about 0.38 in. (10 mm), depending on the power and type of laser. Texturing, etching or scribing can also be done.

The laser beam cuts a narrow kerf with little or no thermal distortion. As with certain other processes, a recast layer and heat-affected zone will be present and may have to be removed for critical applications. However, they are typically thinner than in other thermal processes using a high heat input, particularly plasma arc cutting.

Gas streams are often used to assist laser cutting. Oxygen or air can be used to enhance the cutting rate. The gas stream also serves to remove molten material, particularly from deep cuts. The table on the following page gives cutting information for various stainless steels.

Parameters Used in CO₂ Laser Cutting of Stainless Steels

Т	hickness		Cutting	, Rate
m	m in.	Assisting gas	mm/min	in./min
12 1.0 3.2	(1.)	oxygen oxygen	8890 3050	350 120
3.2	41.3	air	1520	60
5.2		oxygen	1780	70
0.5		oxygen	19000	750
3.0		oxygen	16500	650
1.0		oxygen	14000	550
1.6		oxygen	11400	450
2.0		oxygen	8260	325
3.2	2 0.125	oxygen	5080	200
50	0 watt laser			
0.1	0.004	oxygen	5000	197
0.3	0.012	oxygen	3710	146
1.0	0.039	oxygen	1650	65
1.6	0.063	oxygen	1900	75
3.2	0.126	oxygen	890	35
6.4	0.252	oxygen	510	20
25	0 watt laser			
0.6		oxygen	4570	180
1.6	0.063 ^(e)	oxygen ^(f)	1520	60
2.3	0.09 ^(d)	oxygen	760	30
3.2	0.0125	oxygen ^(g)	250	10

Sources: "Laser Beam Torch - LBT," <u>Machining Data Handbook</u>, Vol. 2, Metcut Res. Assoc., 1980, p.12-76; R. J. Saunders, "Laser Metalworking," <u>Metal Progress</u>, July 1984, p.51.

⁽a) TEMoo mode (b) austenitic alloy (c) ferritic/martensitic alloy (d) Type 321 (e) Type 410, Type 321 (f) 414 kPa (60 psi) (g) 483 kPa (70 psi)

The following table shows some information on drilling.

Parameters for Drilling 0.10-0.13 mm (0.004-0.005 in.) Diameter Holes in Type 304 With ND-YAG Laser

Workpiece Thickness mm in.	Assisting gas	Drilling Time Requirement s	Lamp Current A	Avg. Laser Power of 1.06 µm Wave Length W	Maximum Thickness Drilled mm in.
3.0 0.120	oxygen	88	34	31	4.8 0.190
3.0 0.120	air ^(a)	80	34	31	4.8 0.190
3.0 0.120	argon	221	34	31	48 0.190

^(a)optimum gas for drilling

Source: "Laser Beam Torch - LBT," Machining Data Handbook, Vol. 2,

Metcut Res. Assoc., 1980, p.12-90.

For further information, consult the following:

"Laser Beam Machining - LBM," Machining Data Handbook, Vol. 2,

Metcut Res. Assoc., 1980, p. 12-55 to 12-70.

"Laser Beam Torch - LBT," Machining Data Handbook, Vol. 2,

Metcut Res. Assoc., 1980, p. 12-71 to 12-97.

W. F. Tutte, "The Application of Laser Cutting to Stainless Steel,"

Stainless Steel Industry, Vol. 15 (No. 86), July 1987, p. 9, 11.

M. Pellecchia, "Lasers: The Manufacturer's Outlook," <u>Nontraditional Machining</u>, ASM, 1986, p. 75-78.

R. J. Saunders, "Laser Metalworking," Metal Progress, July 1984, p. 45-51.

D. Elza and S. Burns, "Lasers Take Their Place in Metalworking,"

Machine and Tool Blue Book, July 1985, p. 34-38.

Plasma Arc Machining

In plasma arc machining, a stream of gas is ionized and heated by a constricted arc between a tungsten electrode and the workpiece. Material is removed by the high velocity, high-temperature gas stream. Plasma arc machining can be used to cut tough materials with straight or profile cuts at high speeds. It has the ability to cut thick materials, up to about 6 inches (152 mm). Disadvantages include the possibility of dross attached to the bottom of the cut and an appreciable recast layer and heat-affected zone.

The gas used for the arc may be nitrogen, hydrogen, argon or various admixtures. Compressed air may also be used and can increase cutting rates. This depends on the thickness of the stainless steel, as shown in the table on the following page. However, cut surfaces will be oxidized.

Comparison of Plasma Arc Cutting Rates Using Argon/Hydrogen or Air as Primary Gases

			Cı	ıtting Rate	
T	hickness	Argon/H	ydrogen	Ai	r
mı	n in.	mm/min	in./min	mm/min	in./min
5	0.2	5000	197	5000	197
10	0.4	2600	102	3400	134
15	0.6	1500	59	1800	71
20	8.0	1100	43	1200	47
25	1.0	800	31	850	33
30	1.2	650	26	600	24
35	1.4	500	20	400	16
40	1.6	400	16	300	12
45	1.8	350	14	250	10
50	2.0	300	14	200	8
60	2.4	300	12	200	8

Source: S. Holden, "The Plasma Cutting of Stainless Steel," Stainless Steel Industry, Vol. 13 (No. 74), July 1985, p. 13.

An external shielding gas around the primary arc may be used to more easily remove molten metal from the cut. For stainless steels, carbon dioxide may be used with nitrogen as the primary gas. Water may be used in place of a shielding gas or may be injected into the plasma stream to produce a cleaner cut with a reduced bevel. Nozzle life can also be improved by the cooling action of the water.

For further information, consult the following:

"Plasma Beam Machining - PBM," <u>Machining Data Handbook</u>, Vol. 2, Metcut Res. Assoc., 1980, p. 12-97 to 12-104.

S. Holden, "The Plasma Cutting of Stainless Steel," <u>Stainless Steel Industry</u>, Vol. 13 (No. 74), July 1985 p. 12-25.

T. E. Gittens, "Plasma Arc Cutting - Process Fundamentals," <u>AFS Transactions</u>, Vol. 92, 1984, p. 29-35.

The following tables provide guidelines for cutting stainless steels.

Plasma Arc Cutting Parameters For Stainless Steels

	ness	Cutting		Power Selection
mm	in.	mm/min	in./min	А
6	0.25	1780	70	105
		2540	100	140
		3810	150	210
13	0.5	510	20	135
		1020	40	190
		1780	70	250
		2540	100	270
		3810	150	700
		5330	210	1000
25	1	250	10	175
		510	20	210
		760	30	270
		1020	40	350
		2030	80	540
		2790	110	1000
38	1.5	250	10	280
		510	20	420
		1020	40	620
		1780	70	1000
51	2	130	5	320
		250	10	420
		510	20	610
		1020	40	950
64	2.5	130	5	410
		250	10	550
		510	20	820
76	3	130	5	510
		250	10	675
		510	20	1020
89	3.5	130	5	550
		250	10	730
		510	20	1110
102	4	130	5	675
		250	10	900
114	4.5	130	5	900
127	5	76	3	1100
140	5.5	76	3	1100

Source: "Plasma Beam Machining - PBM," <u>Machining Data Handbook</u>, Vol. 2, Metcut Res. Assoc., 1980, p. 12-99, 12-100.

Plasma Arc Cutting Parameters for Stainless Steels

	This	Cutting Speed ickness Best Max				
Machining Conditions	mm	kness in.	Bes mm/min		Ma mm/min	
100 A	6	0.25	1270	50	2540	100
Primary gas: nitrogen ^(a)	13	0.50	510	20	760	30
Secondary gas:	19	0.75	300	12	380	15
carbon dioxide ^(b)	25	1.00	230	9	280	11
200 A	6	0.25	1650	65	3430	135
Primary gas: nitrogen(c)	13	0.50	1270	50	1780	70
Secondary gas:	19	0.75	890	35	1270	50
carbon dioxide ^(b)	25	1.00	510	20	660	26
	38	1.50	300	12	410	16
400 A	13	0.50	1910	75	3050	120
Primary gas: nitrogen ^(d)	25	1.00	1020	40	1400	55
Secondary gas:	38	1.50	640	25	970	38
carbon dioxide ^(b)	51	2.00	430	17	710	28
	64	2.50	300	12	380	15
	76	3.00	200	8	250	10
300 A	6	0.25	1910	75	3300	130
Primary gas: nitrogen ^(e)	13	0.50	1270	50	1780	70
Water injection (f)	19	0.75	1020	40	1400	55
	25	1.00	640	25	890	35
	32	1.25	480	19	580	23
	38	1.50	380	15	460	18

Source: "Plasma Beam Machining - PBM," <u>Machining Data Handbook</u>, Vol. 2, Metcut Res. Assoc., 1980, p. 12-102, 12-103

Plasma Arc Cutting Parameters for Stainless Steels

Machining Conditions	Thic mm	kness in.	Cutting mm/min	Speed in./min
50-100 A	1.5	0.062	7110	280
	3	0.125	4950	195
Primary gas: nitrogen ^(a)	5	0.188	2160	85
Secondary gas: carbon dioxide(b)	6	0.250	1780	70
	10	0.375	1400	55
	12	0.500	1020	40
	I		1	

Source: "Plasma Beam Machining - PBM," <u>Machining Data Handbook</u>, Vol. 2, Metcut Res. Assoc., 1980, p. 12-103

⁽a) 433 cm3/s (55 ft3./hr), 207 kPa (30 lb/in.2) (b) 1652 cm3/s (210 ft3./hr), 276 kPa (40 lb/in.2) (c) 551 cm3/s (70 ft3./hr), 207 kPa (30 lb/in.2) (d) 393 cm3/s (50 ft3./hr), 138 kPa (20 lb/in.2) (e) 590 cm3/s (75 ft3./hr), 207 kPa (30 lb/in.2) (f) 30-57 L/hr (8-15 gal/hr)

⁽a) 118 cm3/s (15 ft3./hr), 241-276 kPa (35-40 lb/in.2) (b) 1180 cm3/s (150 ft3./hr), 310-345 kPa (45-50 lb/in.2)

Chemical Machining

Chemical machining essentially involves controlled corrosion of the workpiece. A strippable maskant covers areas which are not to be removed. The depth of cut is normally limited to about 0.25 to 0.50 inches (6 to 13 mm); therefore, chemical machining is best suited for machining large, shallow areas. Cut materials will be burr-free, without the introduction of residual stresses or a heat-affected zone. Disadvantages include the danger from the corrosive solutions, low cutting rates, and the fact that the masked areas will be undercut by the corroding solution. In addition, hydrogen embrittlement may be a problem with hardened martensitic alloys and intergranular corrosion may occur, depending on the condition of the workpiece.

Parameters for Chemical Machining

Etchant	Concen- tration		mm/min ir	n. x 10 ⁻³ /min			of cut	roughness Ra
			Aust	enitic Sta	inless St	eels		
FeCl ₃ ^(b)	42° Baumé	54 130	0.020-0.13		Polyvinyl Chloride	1.5-2.0	0.1 0.004	1.6 63
			Marte	ensitic Sta	ainless St	eels		_
FeCl ₃ ^(b)	52° Baumé	54 130	0.006		Polyvinyl Chloride	_	0.1 0.004	3.2 125

^(a)The ratio of depth of undercut to depth of cut.

For further information, consult the following:

"Chemical Machining - CHM," <u>Machining Data Handbook</u>, Vol. 2, Metcut Res. Assoc., 1980, p. 13-3 to 13-16.

^(b) or HCl : HNO₃

Source: "Chemical Machining - CHM," Machining Data Handbook, Vol. 2,

Metcut Res. Assoc., 1980, pp. 13-16.

HELPFUL TABLES

AUTOMATIC MACHINING EFFICIENCY INDEX TABLE

Cycle time	Parts per hour based on cycle time and efficiency								
(Number of seconds)	Gross	90%	80%	70%	60%				
	production	efficiency	efficiency	efficiency	efficiency				
1 1½ 1½ 1½ 1¾	3600 2888 2400 2056	3240 2600 2160 1849	2880 2315 1930 1643	2520 2022 1680 1440	2160 1732 1441 1233				
2	1800	1620	1440	1263	1082				
2½	1440	1296	1152	1008	864				
3	1200	1080	960	840	720				
3½	1029	925	822	719	616				
4	900	810	720	630	540				
4½	800	720	640	560	480				
5	720	648	576	504	432				
5½	654	589	523	458	393				
6	600	540	480	420	360				
6½	554	498	443	388	332				
7	514	463	412	360	309				
7½	480	432	384	336	288				
8	450	405	360	315	270				
8½	423	381	339	296	254				
9	400	360	320	280	240				
9½	379	341	303	265	227				
10	360	324	288	252	216				
11	327	295	262	229	196				
12	300	270	240	210	180				
13	277	249	221	194	166				
14	257	231	206	180	154				
15	240	216	192	168	144				
16	225	202	180	157	135				
17	212	190	169	148	127				
18	200	180	160	140	120				
19	189	170	151	132	114				
20	180	162	144	126	108				

Cycle time	Parts p	Parts per hour based on cycle time and efficiency								
(Number of seconds)	Gross	90%	80%	70%	60%					
	production	efficiency	efficiency	efficiency	efficiency					
21	171	154	137	120	103					
22	163	147	131	114	98					
23	156	141	125	110	94					
24	150	135	120	105	90					
25	144	129	115	101	86					
26	138	124	110	97	83					
27	133	120	107	93	80					
28	128	115	103	90	77					
29	124	111	99	87	74					
30	120	108	96	84	72					
35	103	92	82	72	62					
40	90	81	72	63	54					
45	80	72	64	56	48					
50	72	65	57	50	43					
55	65	59	52	46	39					
60	60	54	48	42	36					
70	51	46	41	36	31					
80	45	40	36	31	27					
90	40	36	32	28	24					
100	36	32	29	25	22					
110	33	29	26	23	19.6					
120	30	27	24	21	18					
140	26	23	20	18	15.4					
160	22	20.2	18	15.7	13.5					
180	20	18	16	14	12					
200	18	16.2	14.4	12.6	10.1					
220	16.4	14.6	13.1	11.5	9.8					
240	15	13.5	12	10.5	9					
260	13.8	12.5	11.1	9.7	8.3					
280	12.8	11.5	10.3	9	7.7					
300	12	10.8	9.6	8.4	7.2					

MACHINE HOURS PER 1,000 PIECES BASED ON HOURLY PRODUCTION

Net	Machine	Net	Machine	Net	Machine
hourly	hours per	hourly	hours per	hourly	hours per
production	1000 pieces	production	1000 pieces	production	1000 pieces
1	1000.	43	23.3	85	11.8
2	500.	44	22.7	86	11.6
3	333.3	45	22.2	87	11.5
4	250.	46	21.7	88	11.4
5	200.	47	21.3	89	11.3
6	166.6	48	20.9	90	11.1
7	142.8	49	20.4	91	11.
8	125.	50	20.	92	10.9
9	111.1	51	19.6	93	10.8
10	100.	52	19.2	94	10.7
11	90.9	53	18.9	95	10.5
12	83.3	54	18.5	96	10.4
13	77.	55	18.2	97	10.3
14	71.4	56	17.8	98	10.2
15	66.6	57	17.5	99	10.1
16	62.5	58	17.3	100	10.
17	58.8	59	17.	101	9.9
18	55.5	60	16.7	102	9.8
19	52.6	61	16.4	103	9.7
20	50.	62	16.1	104	9.6
21	47.6	63	15.9	105	9.5
22	45.4	64	15.6	106	9.4
23	43.4	65	15.4	107	9.3
24	41.6	66	15.2	108	9.3
25	40.	67	15.	109	9.2
26	38.5	68	14.7	110	9.1
27	37.1	69	14.5	112	9.
28	35.7	70	14.3	114	8.8
29	34.5	71	14.1	116	8.6
30	33.3	72	13.9	118	8.5
31	32.2	73	13.7	120	8.35
32	31.3	74	13.5	122	8.2
33	30.3	75	13.3	124	8.07
34	29.4	76	13.2	126	7.95
35	28.6	77	13.	128	7.81
36	27.8	78	12.8	130	7.7
37	27.	79	12.6	132	7.57
38	26.3	80	12.5	134	7.46
39	25.6	81	12.4	136	7.35
40	25.	82	12.2	138	7.25
41	24.4	83	12.1	140	7.15
42	23.8	84	11.9	142	7.05

Net	Machine	Net	Machine	Net	Machine
hourly	hours per	hourly	hours per	hourly	hours per
production	1000 pieces	production	1000 pieces	production	1000 pieces
144	6.95	350	2.86	960	1.04
146	6.85	360	2.78	980	1.02
148	6.75	370	2.70	1000	1.
150	6.65	380	2.63	1050	.96
155	6.45	390	2.56	1100	.91
160	6.25	400	2.50	1150	.87
165	6.05	410	2.44	1200	.84
170	5.88	420	2.38	1250	.80
175	5.72	430	2.33	1300	.77
180	5.55	440	2.27	1350	.74
185	5.40	450	2.22	1400	.72
190	5.26	460	2.18	1450	.69
195	5.13	470	2.13	1500	.67
200	5.	480	2.08	1600	.63
205	4.88	490	2.04	1700	.59
210	4.76	500	2.	1800	.56
215	4.65	510	1.96	1900	.53
220	4.54	520	1.92	2000	.50
225	4.44	530	1.89	2100	.48
230	4.35	540	1.85	2200	.46
235	4.25	550	1.82	2300	.44
240	4.17	560	1.79	2400	.42
245	4.08	570	1.76	2500	.40
250	4.	580	1.73	2600	.39
255	3.92	590	1.70	2700	.37
260	3.85	600	1.67	2800	.36
265	3.77	620	1.62	2900	.35
270	3.70	640	1.57	3000	.33
275	3.64	660	1.52	3100	.32
280	3.57	680	1.47	3200	.31
285	3.51	700	1.43	3300	.31
290	3.45	720	1.39	3400	.30
295	3.39	740	1.35	3500	.29
300	3.33	760	1.32	3600	.28
305	3.28	780	1.29	3700	.27
310	3.23	800	1.25	3800	.26
315	3.18	820	1.22	3900	.26
320	3.13	840	1.19	4000	.25
325	3.08	860	1.17	4200	.24
330	3.03	880	1.14	4400	.23
335	2.98	900	1.11	4600	.22
340	2.94	920	1.09	4800	.21
345	2.90	940	1.07	5000	.20

APPROXIMATE STOCK REQUIRED TO MAKE 1,000 PIECES

Length of finished piece plus cut-off —inches	Number of feet per 1000 pieces	Length of finished piece plus cut-off — inches	Number of feet per 1000 pieces	Length of finished piece plus cut-off — inches	Number of feet per 1000 pieces	Length of finished piece plus cut-off — inches	Number of feet per 1000 pieces
1/64 1/32 3/64 1/16 5/64	1.302 2.604 3.906 5.208 6.510	31/ ₆₄ 1/ ₂ 33/ ₆₄ 1/ ₃₂ 35/ ₆₄	40.364 41.666 42.969 44.271 45.573	61/ ₆₄ 31/ ₃₂ 63/ ₆₄ 1 11/ ₆₄	79.427 80.729 82.031 83.333 84.635	1 ² / ₆ 4 1// ₁₆ 1 ² / ₆ 4 1 ¹⁵ / ₃₂ 1 ³¹ / ₆ 4	118.489 119.792 121.094 122.396 123.698
3/ ₃₂ 7/64 1/8 9/64 5/ ₃₂	7.812	9/16	46.875	1½32	85.937	1½	125.000
	9.115	37/64	48.177	1¾64	87.239	1 ³³ / ₆₄	126.302
	10.417	19/32	49.479	1½6	88.542	1½, ₃₂	127.604
	11.719	39/64	50.781	1½6	89.844	1 ³⁵ / ₆₄	118.906
	13.021	5/8	52.083	1¾32	91.146	1 ⁹ / ₁₆	130.208
11/64	14.323	41/64	53.385	11/64	92.448	1 ³ / ₆₄	131.510
3/16	15.625	21/32	54.687	11/8	93.750	11 ⁹ / ₃₂	132.812
13/64	16.927	43/64	55.989	19/64	95.052	1 ³⁹ / ₆₄	134.115
13/64	18.230	11/16	57.292	15/32	96.354	1 ⁵ / ₈	135.417
15/64	19.531	45/64	58.594	111/64	97.656	1 ⁴¹ / ₆₄	136.719
1/4	20.833	23/ ₃₂	59.896	1 ³ / ₁₆	98.958	1 ²¹ / ₃₂	138.021
17/64	22.135	47/ ₆₄	61.198	1 ¹³ / ₆₄	100.260	1 ⁴³ / ₆₄	139.323
9/32	23.437	3/ ₄	62.500	1 ¹ / ₃₂	101.562	1 ¹¹ / ₁₆	140.625
19/64	24.739	49/ ₆₄	63.802	1 ¹⁵ / ₆₄	102.864	1 ⁴⁵ / ₆₄	141.927
5/16	26.042	25/ ₃₂	65.104	1 ¹ / ₄	104.167	1 ²³ / ₃₂	143.229
21/64	27.344	51/64	66.406	1 ¹ / ₆₄	105.469	14/64	144.531
11/32	28.646	13/16	67.708	1 ⁹ / ₃₂	106.771	13/4	145.833
23/64	29.948	53/64	69.010	1 ¹ / ₆₄	108.073	149/64	147.135
3/8	31.250	27/32	70.312	1 ⁵ / ₁₆	109.375	125/32	148.437
25/64	32.552	55/64	71.614	1 ²¹ / ₆₄	110.677	151/64	149.739
13/ ₃₂ 27/64 7/16 29/64 15/ ₃₂	33.854 35.156 36.458 37.760 39.062	7/ ₈ 57/64 29/ ₃₂ 59/64 15/16	72.917 74.219 75.521 76.823 78.125	1 ¹¹ / ₃₂ 1 ²³ / ₆₄ 1 ³ / ₈ 1 ²⁵ / ₆₄ 1 ¹³ / ₃₂	111.979 113.281 114.583 115.885 117.187	1 ¹³ / ₁₆ 1 ⁵³ / ₆₄ 1 ² / ₃₂ 1 ⁵⁵ / ₆₄ 1 ½	151.042 152.344 153.646 154.948 156.250

Based on 12'0" bars, the losses in bar ends are:

1" bar end—0.7% 2" '' —1.38% 3" '' —2.08% 4" '' —2.80%

Length of finished piece plus cut-off — inches	Number of feet per 1000 pieces	Length of finished piece plus cut-off — inches	Number of feet per 1000 pieces	Length of finished piece plus cut-off — inches	Number of feet per 1000 pieces	Length of finished piece plus cut-off — inches	Number of feet per 1000 pieces
15%4	157.552	2 ²³ / ₆ 4	196.615	2 ⁵³ / ₆ 4	235.677	319/64	274.739
129/32	158.854	2 ³ / ₈	197.917	2 ²⁷ / ₃₂	236.979	35/16	276.042
15%64	160.156	2 ²⁵ / ₆ 4	199.219	2 ⁵⁵ / ₆ 4	238.281	321/64	277.344
115/16	161.458	2 ¹³ / ₃₂	200.521	2 ⁷ / ₈	239.583	311/32	278.646
161/64	162.760	2 ² / ₆ 4	201.823	2 ⁵ / ₆ 4	240.885	323/64	279.948
1 ³¹ / ₃₂	164.062	2½16	203.125	2 ²⁹ / ₃₂	242.188	3 ³ / ₈	281.250
1 ⁶³ / ₆₄	165.365	2 ²⁹ /64	204.427	2 ⁵⁹ / ₆₄	243.490	3 ²⁵ / ₆ 4	282.552
2	166.667	2 ¹⁵ /32	205.729	2 ¹⁵ / ₁₆	244.792	3 ¹³ / ₃₂	283.854
2 ¹ / ₆₄	167.969	2 ³¹ /64	207.031	2 ⁶¹ / ₆₄	246.094	3 ² / ₆ 4	285.156
2 ¹ / ₃₂	169.271	2 ¹ / ₂	208.333	2 ³¹ / ₃₂	247.396	3 ⁷ / ₁₆	286.458
2 ³ / ₆ 4	170.573	2 ³³ / ₆₄	209.635	263/64	248.698	329/64	287.760
2 ¹ / ₁₆	171.875	2 ¹⁷ / ₃₂	210.938	3	250.000	315/32	289.062
2 ⁵ / ₆ 4	173.177	2 ³⁵ / ₆₄	212.240	31/64	251.302	331/64	290.365
2 ³ / ₃₂	174.479	2 ⁹ / ₁₆	213.542	31/32	252.604	31/2	291.667
2 ³ / ₆ 4	175.781	2 ³⁷ / ₆₄	214.844	33/64	253.906	333/64	292.969
2½8	177.083	2 ¹⁹ / ₃ z	216.146	3½16	255.208	317/ ₃₂	294.271
29/64	178.385	2 ³⁹ / ₆ 4	217.448	35/64	256.510	335/ ₆₄	295.573
25/32	179.688	2 ⁵ / ₈	218.750	33/32	257.813	39/ ₁₆	296.875
2½64	180.990	2 ⁴¹ / ₆ 4	220.052	37/64	259.115	337/ ₆₄	298.177
23/16	182.292	2 ²¹ / ₃ 2	221.354	3½8	260.417	319/ ₃₂	299.479
2 ¹³ / ₆ 4	183.594	2 ⁴³ / ₆ 4	222.656	3%4	261.719	3 ³⁹ / ₆ 4	300.781
2 ¹ / ₃₂	184.896	2 ¹¹ / ₁ 6	223.958	35/32	263.021	3 ⁵ / ₈	302.083
2 ¹⁵ / ₆ 4	186.198	2 ⁴⁵ / ₆ 4	225.260	311/64	264.323	3 ⁴¹ / ₆ 4	303.385
2 ¹ / ₄	187.500	2 ²³ / ₃ 2	226.563	33/16	265.625	3 ²¹ / ₃ 2	304.688
2 ¹ / ₆ 4	188.802	2 ⁴ / ₆ 4	227.865	313/64	266.927	3 ⁴³ / ₆ 4	305.990
2 ⁹ / ₃₂ 2 ¹ / ₆ 4 2 ⁵ / ₁₆ 2 ²¹ / ₆ 4 2 ¹¹ / ₃₂	190.104 191.406 192.708 194.010 195.312	2 ³ / ₄ 2 ⁴⁹ / ₆ ₄ 2 ²⁵ / ₃₂ 2 ⁵¹ / ₆ ₄ 2 ¹³ / ₁₆	229.167 230.469 231.771 233.073 234.375	3½32 3½64 3¼ 3½4 31½64 39⁄32	268.229 269.531 270.833 272.135 273.437	3 ¹¹ / ₁₆ 3 ⁴⁵ / ₆₄ 3 ²³ / ₃₂ 3 ⁴ / ₆₄ 3 ³ / ₄	307.292 308.594 309.896 311.198 312.500

*WEIGHTS OF STEEL BARS PER LINEAL FOOT

Size in inches	Round	Square	Hexagon	Octagon
1/32	.0026	.0033	.0029	.0028
1/16	.0104	.0133	.0115	.0110
1/8	.0417	.0531	.0460	.0440
3/16	.0938	.1195	.1035	.0990
1/4	.1669	.2123	.1840	.1760
5/16	.2608	.3333	.2875	.2751
3/8	.3756	.4782	.4141	.3961
7/16	.5111	.6508	.5636	.5391
1/2	.6676	.8500	.7361	.7042
9/16	.8449	1.076	.9317	.8912
5/8	1.043	1.328	1.150	1.100
11/16	1.262	1.608	1.392	1.331
3/4	1.502	1.913	1.656	1.584
13/ ₁₆	1.763	2.245	1.944	1.859
1/8	2.044	2.603	2.254	2.157
15/ ₁₆	2.347	2.989	2.588	2.476
1	2.670	3.400	2.945	2.817
1½ ₁₆	3.014	3.838	3.324	3.180
1½ ₈	3.379	4.303	3.727	3.565
1¾ ₁₆	3.766	4.795	4.152	3.972
1½ 1½ 1½ 1¾ 1½	4.173 4.600 5.019 5.518	5.312 5.857 6.428 7.026	4.601 5.072 5.567 6.085	4.401 4.852 5.325 5.820
1½ 1½ 1½ 1½ 1½ 11/16	6.008 6.520 7.051 7.604	7.650 8.301 8.978 9.682	6.625 7.189 7.775 8.385	6.338 6.877 7.438 8.021
1 ³ / ₄	8.178	10.41	9.018	8.626
1 ¹³ / ₁₆	8.773	11.17	9.673	9.253
1 ¹ / ₈	9.388	11.95	10.35	9.902
1 ¹⁵ / ₁₆	10.02	12.76	11.05	10.57
2 2½ ₁₆ 2½ 2¾ 2³/ ₁₆	10.68 11.36 12.06 12.78	13.60 14.46 15.35 16.27	11.78 12.53 13.30 14.09	11.27 11.98 12.72 13.48
2½	13.52	17.22	14.91	14.26
2½ ₁₆	14.28	18.19	15.75	15.06
2¾	15.07	19.18	16.61	15.89
2½ ₁₆	15.86	20.20	17.49	16.73
2½ 2½ 2½ 6 2½ 2½ 21½	16.69 17.53 18.40 19.29	21.25 22.33 23.43 24.56	18.40 19.33 20.29 21.27	17.60 18.50 19.41 20.34
2 ³ / ₄	20.20	25.71	22.27	21.30
2 ¹³ / ₁₆	21.12	26.90	23.29	22.28
2 ⁷ / ₈	22.07	28.10	24.34	23.28
2 ¹⁵ / ₁₆	23.04	29.34	25.41	24.30

^{*}Weights are based on 489.6 lbs. per cubic foot of steel.

See page 164 for decimal and metric equivalents for fractional sizes

Size in inches	Round	Square	Hexagon	Octagon
3 3½6 3½8 3¾8	25.03 25.04 26.08 27.13	30.60 31.89 33.20 34.55	26.50 27.62 28.75 29.92	25.35 26.42 27.51 28.62
3½ 3½6 3¾ 3½6	28.20 29.30 30.42 31.56	35.92 37.31 38.73 40.18	31.10 32.31 33.54 34.79	29.75 30.91 32.08 33.28
3½ 3½ 3½ 35/8 3½	32.71 33.90 35.09 36.31	41.65 43.14 44.68 46.24	36.07 37.37 38.69 40.04	34.50 35.75 37.01 38.30
3 ³ / ₄ 3 ¹ / ₉ / ₁₆ 3 ⁷ / ₈ 3 ¹ / ₉ / ₁₆	37.56 38.81 40.10 41.40	47.82 49.42 51.05 52.71	41.41 42.80 44.21 45.65	39.61 40.94 42.29 43.67
4 4½ ₁₆ 4½ 4¾ ₈ 4¾ ₁₆	42.73 44.07 45.44 46.83	54.40 56.11 57.85 59.62	47.11 48.65 50.10 51.60	45.07 46.45 47.93 49.38
4½ 4½ 6 4¾ 4½ 4½	48.24 49.66 51.11 52.58	61.41 63.23 65.08 66.95	53.16 54.70 56.36 58.05	50.88 52.34 53.91 55.45
4½ 4½ 4½ 4½ 4½ 4½	54.07 55.59 57.12 58.67	68.85 70.78 72.73 74.70	59.63 61.29 62.98 64.70	57.04 58.62 60.25 61.83
4 ³ / ₄ 4 ¹³ / ₁₆ 4 ⁷ / ₈ 4 ¹⁵ / ₁₆	60.25 61.84 63.46 65.10	76.71 78.74 80.81 82.89	66.44 68.25 70.05 71.81	63.55 65.19 66.92 68.64
5 5½ 5½ 5¾ 5¾	66.76 68.44 70.14 71.86	85.00 87.14 89.30 91.49	73.61 75.53 77.37 79.35	70.42 72.20 73.93 75.79
5½ 5½6 5¾ 5½6	73.60 75.37 77.15 78.95	93.72 95.96 98.23 100.5	81.16 83.15 85.13 87.14	77.63 79.45 81.40 83.28
5½ 5½ 5½ 55/8 5½	80.77 82.62 84.49 86.38	102.8 105.2 107.6 110.0	89.07 91.18 93.24 95.35	85.20 87.15 89.10 91.08
53/4 513/16 53/8 515/16	88.29 90.22 92.17 94.14	112.4 114.9 117.4 119.9	97.35 99.58 101.7 103.9	93.13 95.17 96.20 99.26

*WEIGHTS OF STEEL BARS PER LINEAL FOOT (Continued)

Size in inches	Round	Square	Hexagon	Octagon
6	96.14	122.4	106.0	101.4
6½16	98.14	125.0	108.2	103.4
6½8	100.2	127.6	110.4	105.7
6¾8	102.2	130.2	112.7	107.7
6½ 6½ 6½ 6¾ 6½	104.3 106.4 108.5 110.7	132.8 135.5 138.2 140.9	115.1 117.3 119.6 122.0	109.9 112.2 114.3 116.7
6½ 6½ 6½ 65/8 6½	112.8 114.9 117.2 119.4	143.6 146.5 149.2 152.1	124.4 126.7 129.3 131.8	118.9 121.2 123.5 125.9
63/4	121.7	154.9	134.0	128.4
613/16	123.9	157.8	136.7	130.6
67/8	126.2	160.8	139.1	133.0
615/16	128.5	163.6	141.7	135.4
7	130.9	166.6	144.3	138.0
7½ ₁₆	133.2	169.6	146.8	140.4
7½	135.6	172.6	149.4	142.8
7¾ ₁₆	137.9	175.6	152.1	145.4
7½	140.4	178.7	154.8	148.0
7½16	142.8	181.8	157.5	150.6
7¾	145.3	184.9	160.3	153.2
7½6	147.7	188.1	162.8	156.7
7½ 7½ 7½ 7½ 7½ 7½	150.2 152.7 155.2 157.8	191.3 194.4 197.7 200.9	165.6 168.3 171.2 174.1	158.4 160.8 163.0 166.3
7 ³ ⁄ ₄	160.3	204.2	176.7	168.9
7 ¹³ ⁄ ₁₆	163.0	207.6	179.7	171.8
7 ⁷ ⁄ ₈	165.6	210.8	182.6	174.5
7 ¹⁵ ⁄ ₁₆	168.2	214.2	185.5	177.3
8 8½ 8½ 8½ 8¾	171.0 173.6 176.3 179.0	217.6 221.0 224.5 228.0	188.4 191.4 194.5 197.4	180.3 182.9 185.8 188.7
8½ 8½ 6 8¾ 8½	181.8 184.5 187.3 190.1	231.4 234.9 238.5 242.0	200.6 203.5 206.7 209.7	191.7 194.5 197.4 200.5
8½	193.0	245.6	212.7	203.5
8½	195.7	249.3	215.7	206.3
85/8	198.7	252.9	219.6	209.4
8½ ₁₆	201.6	256.6	222.3	212.4
8 ³ / ₄	204.4	260.3	225.5	215.5
8 ¹³ / ₁₆	207.4	264.1	228.7	218.7
8 ⁷ / ₈	210.3	267.9	232.0	221.7
8 ¹⁵ / ₁₆	213.3	271.6	235.2	224.8

^{*}Weights are based on 489.6 lbs. per cubic foot of steel.

Size in inches	Round	Square	Hexagon	Octagon
9 9½ 9½ 9¾ 9¾	216.3 219.3 222.4 225.4	275.4 279.3 283.2 287.0	238.5 241.9 245.4 248.6	228.1 231.2 234.6 237.5
9½	228.5	290.9	252.2	240.8
9½6	231.5	294.9	255.4	244.0
9¾	234.7	298.9	259.0	247.5
9½6	237.9	302.8	262.4	250.8
9½ 9½ 9½ 95/8 9½	241.0 244.2 247.4 250.6	306.8 310.9 315.0 319.1	265.7 269.4 273.8 276.6	254.2 257.4 260.8 264.2
9 ³ / ₄	253.9	323.2	280.1	267.6
9 ¹ / ₉ / ₁₆	257.1	327.4	283.6	271.0
9 ¹ / ₈	260.4	331.6	287.4	274.6
9 ¹ / ₉ / ₁₆	263.7	335.8	290.8	278.0
10	267.0	340.0	294.4	281.7
10½6	270.4	344.3	298.4	285.3
10½8	273.8	348.5	302.2	288.8
10¾8	277.1	352.9	305.6	292.1
10 ¹ / ₄	280.6	357.2	309.6	296.9
10 ⁵ / ₁₆	284.0	361.6	313.4	299.4
10 ³ / ₈	287.4	366.0	317.0	303.0
10 ³ / ₁₆	290.9	370.4	320.8	306.8
10½ 10%6 10% 10½ 10½	294.4 297.9 301.4 305.0	374.9 379.4 383.8 388.3	325.0 328.6 332.5 336.5	310.5 314.1 316.8 321.6
10 ³ / ₄	308.6	392.9	340.5	325.4
10 ¹ / ₁₆	312.2	397.5	344.3	329.2
10 ⁷ / ₈	315.8	402.1	348.4	333.0
10 ¹ / ₁₆	319.5	406.8	353.5	337.0
11	323.1	411.4	356.3	340.8
11½6	326.8	416.1	360.7	344.7
11½	330.5	420.9	364.7	348.5
11¾6	334.3	425.5	368.8	352.4
11½	337.9	430.3	372.6	356.3
11½6	341.7	435.1	376.7	360.2
11½	345.5	439.9	381.2	364.3
11½	349.4	444.8	385.6	368.3
11½	353.1	449.6	389.5	372.2
11%6	357.0	454.5	392.8	376.5
11%	360.9	459.5	398.2	380.6
11½	364.8	464.4	402.7	384.7
11 ³ / ₄	368.6	469.4	406.6	388.6
11 ¹³ / ₁₆	372.6	474.4	411.1	392.8
11 ¹ / ₈	376.6	479.5	415.7	397.2
11 ¹⁵ / ₁₆	380.6	484.5	419.5	401.4
12	384.4	489.6	424.0	405.6

DECIMAL SIZES OF DRILLS AND LENGTH OF DRILL POINTS Based on 118° point angle

Drill	Diam. inches	Length of point inches	Drill	Diam. inches	Length of point inches	Drill	Diam. inches	Length of point inches
80 79 1/64 78 77	.0135 .0145 .0156 .0160 .0180	.004 .004 .005 .005	1.7 mm 51 50 1.8 mm 49	.0669 .0670 .0700 .0709 .0730	.020 .020 .021 .021 .022	3.5 mm 28 %4 3.6 mm 27	.1378 .1405 .1406 .1417 .1440	.041 .042 .042 .042 .043
.5 mm 76 75 74 .6 mm	.0197 .0200 .0210 .0225 .0236	.006 .006 .006 .007	1.9 mm 48 564 47 2. mm	.0748 .0760 .0781 .0785 .0787	.023 .023 .024 .024 .024	3.7 mm 26 25 3.8 mm 24	.1457 .1470 .1495 .1496 .1520	.044 .044 .045 .045 .046
73 72 71 .7 mm 70	.0240 .0250 .0260 .0276 .0280	.007 .008 .008 .008	46 45 2.1 mm 44 2.2 mm	.0810 .0820 .0827 .0860 .0866	.024 .025 .025 .026 .026	3.9 mm 23 ⁵ ⁄ ₃₂ 22 4. mm	.1535 .1540 .1562 .1570 .1575	.046 .046 .047 .047 .047
69 68 ¹ / ₃₂ .8 mm 67	.0292 .0310 .0313 .0315 .0320	.009 .009 .009 .010	43 2.3 mm 42 ³ / ₃₂ 2.4 mm	.0890 .0905 .0935 .0937 .0945	.027 .027 .028 .028 .028	21 20 4.1 mm 4.2 mm 19	.1590 .1610 .1614 .1654 .1660	.048 .048 .048 .050 .050
66 65 .9 mm 64 63	.0330 .0350 .0354 .0360 .0370	.010 .011 .011 .011 .011	41 40 2.5 mm 39 38	.0960 .0980 .0984 .0995 .1015	.029 .029 .029 .029 .030	4.3 mm 18 ¹¹ / ₆₄ 17 4.4 mm	.1693 .1695 .1719 .1730 .1732	.051 .051 .052 .052 .052
62 61 1. mm 60 59	.0380 .0390 .0394 .0400 .0410	.011 .012 .012 .012 .012	2.6 mm 37 2.7 mm 36 764	.1024 .1040 .1063 .1065 .1093	.031 .031 .032 .032 .033	16 4.5 mm 15 4.6 mm 14	.1770 .1771 .1800 .1811 .1820	.053 .053 .054 .054 .055
58 57 1.1 mm 56 3/64	.0420 .0430 .0433 .0465 .0469	.013 .013 .013 .014 .014	35 2.8 mm 34 33 2.9 mm	.1100 .1102 .1110 .1130 .1142	.033 .033 .033 .034 .034	13 4.7 mm ³ / ₁₆ 4.8 mm 12	.1850 .1850 .1875 .1890 .1890	.056 .056 .056 .057 .057
1.2 mm 1.3 mm 55 54 1.4 mm	.0472 .0512 .0520 .0550 .0551	.014 .015 .016 .017 .017	32 3. mm 31 3.1 mm	.1160 .1181 .1200 .1220 .1250	.035 .035 .036 .037 .037	11 4.9 mm 10 9 5. mm	.1910 .1929 .1935 .1960 .1968	.057 .058 .058 .059 .059
1.5 mm 53 ½16 1.6 mm 52	.0591 .0595 .0625 .0629 .0635	.018 .018 .019 .019 .019	3.2 mm 30 3.3 mm 3.4 mm 29	.1260 .1285 .1299 .1339 .1360	.038 .039 .039 .040 .041	8 5.1 mm 7 ¹³ / ₆ 4 6	.1990 .2008 .2010 .2031 .2040	.060 .060 .060 .061

Drill	Diam. inches	Length of point inches	Drill	Diam. inches	Length of point inches	Drill	Diam. inches	Length of point inches
5.2 mm 5 5.3 mm 4 5.4 mm	.2047 .2055 .2087 .2090 .2126	.062 .062 .063 .063 .064	M 7.5 mm ¹⁹ / ₆₄ 7.5 mm N	.2950 .2953 .2968 .2992 .3020	.089 .089 .089 .090	Y 13/ ₃₂ Z 10.5 mm 21/ ₆₄	.4040 .4062 .4130 .4134 .4219	.121 .122 .124 .124 .127
3 5.5 mm ^{1/32} 5.6 mm 2	.2130 .2165 .2187 .2205 .2210	.064 .065 .066 .066	7.7 mm 7.8 mm 7.9 mm 5/16 8. mm	.3031 .3071 .3110 .3125 .3150	.091 .092 .093 .094 .095	11. mm ¹ / ₁₆ 11.5 mm ²⁹ / ₆₄ ¹⁵ / ₃₂	.4330 .4375 .4528 .4531 .4687	.130 .131 .136 .136 .141
5.7 mm 1 5.8 mm 5.9 mm	.2244 .2280 .2283 .2323 .2340	.067 .068 .069 .070	0 8.1 mm 8.2 mm P 8.3 mm	.3160 .3189 .3228 .3230 .3268	.09 \$.096 .097 .097 .098	12. mm ³¹ / ₆₄ 12.5 mm ¹ / ₂ 13. mm	.4724 .4843 .4921 .5000 .5118	.142 .145 .148 .150 .154
15/64 6. mm B 6.1 mm C	.2344 .2362 .2380 .2401 .2420	.070 .071 .071 .072 .073	21/ ₆₄ 8.4 mm 0 8.5 mm 8.6 mm	.3281 .3307 .3320 .3346 .3386	.098 .099 .099 .101 .102	³³ / ₆₄ ¹⁷ / ₃₂ 13.5 mm ³⁵ / ₆₄ 14. mm	.5156 .5312 .5315 .5469 .5512	.155 .160 .160 .164 .166
6.2 mm D 6.3 mm E	.2441 .2460 .2480 .2500 .2500	.073 .074 .075 .075 .075	R 8.7 mm 11/ ₃₂ 8.8 mm S	.3390 .3425 .3437 .3465 .3480	.102 .103 .103 .104 .104	%16 14.5 mm 3%4 15. mm	.5625 .5709 .5781 .5906 .5937	.169 .172 .174 .177 .178
6.4 mm 6.5 mm F 6.6 mm G	.2520 .2559 .2570 .2598 .2610	.076 .077 .077 .078 .078	8.9 mm 9. mm T 9.1 mm	.3504 .3543 .3580 .3583 .3594	.105 .105 .108 .108 .108	³⁹ / ₆₄ 15.5 mm ⁵ / ₈ 16. mm ⁴¹ / ₆₄	.6094 .6102 .6250 .6299 .6406	.183 .183 .188 .189 .193
6.7 mm 17/64 H 6.8 mm 6.9 mm	.2638 .2656 .2660 .2677 .2716	.079 .080 .080 .080 .082	9.2 mm 9.3 mm U 9.4 mm 9.5 mm	.3622 .3661 .3680 .3701 .3740	.109 .110 .111 .111 .112	16.5 mm ²¹ / ₃₂ 17. mm ⁴³ / ₆₄ ¹¹ / ₁₆	.6496 .6562 .6693 .6719 .6875	.195 .197 .201 .202 .206
7. mm J 7.1 mm K	.2720 .2756 .2770 .2795 .2811	.082 .083 .083 .084 .084	3/8 V 9.6 mm 9.7 mm 9.8 mm	.3750 .3770 .3780 .3819 .38 5 8	.113 .113 .114 .115 .116	17.5 mm 45/64 18. mm 23/32 18.5 mm	.6890 .7031 .7087 .7187 .7283	.207 .211 .213 .216 .219
%32 7.2 mm 7.3 mm L 7.4 mm	.2812 .2835 .2874 .2900 .2913	.084 .085 .086 .087 .087	9.9 mm 25%4 10. mm	.3860 .3898 .3906 .3937 .3970	.116 .117 .117 .118 .119	47/64 19. mm 3/4 49/64 19.5 mm	.7344 .7480 .7500 .7656 .7677	.221 .225 .225 .230 .231

DECIMAL SIZES OF DRILLS AND LENGTH OF DRILL POINTS Based on 118° point angle (Continued)

Drill	Diam. inches	Length of point inches	Drill	Diam. inches	Length of point inches	Drill	Diam. inches	Length of point inches
25/32 20. mm 51/64 20.5 mm	.7812 .7874 .7969 .8071 .8125	.235 .236 .239 .242 .244	1 ¹¹ / ₆₄ 30. mm 1 ³ / ₁₆ 30.5 mm 1 ¹³ / ₆₄	1.1719 1.1811 1.1875 1.2008 1.2031	.352 .355 .357 .361 .362	1%16 40. mm 13%4 19%2 40.5 mm	1.5625 1.5748 1.5781 1.5937 1.5945	.469 .473 .474 .479 .479
21. mm 53/64 27/32 21.5 mm 55/64	.8268	.248	1 ¹ / ₃₂	1.2187	.366	1 ³ % ₄	1.6094	.483
	.8281	.249	31. mm	1.2205	.367	41. mm	1.6142	.485
	.8437	.253	1 ¹ / ₆₄	1.2344	.371	1 ⁵ / ₈	1.6250	.488
	.8465	.254	31.5 mm	1.2402	.373	41.5 mm	1.6339	.491
	.8594	.258	1 ¹ / ₄	1.2500	.376	1 ⁴ / ₆₄	1.6406	.493
22. mm	.8661	.260	32. mm	1.2599	.378	42. mm 1 ²¹ / ₃₂ 1 ⁴ 3/ ₆₄ 42.5 mm 1 ¹¹ / ₁₆	1.6536	.497
½8	.8750	.263	1 ¹ ½ ₄	1.2656	.380		1.6562	.497
22.5 mm	.8858	.266	32.5 mm	1.2795	.384		1.6719	.502
5½4	.8906	.268	1½ ₃₂	1.2812	.385		1.6732	.503
23. mm	.9055	.272	1 ¹ ½ ₆₄	1.2969	.390		1.6875	.507
²⁹ / ₃₂	.9062	.272	33. mm	1.2992	.390	43. mm	1.6929	.509
⁵⁵ / ₆₄	.9219	.277	1½6	1.3125	.394	1 ⁴ % ₄	1.7031	.512
23.5 mm	.9252	.278	33.5 mm	1.3189	.396	43.5 mm	1.7126	.514
¹⁵ / ₁₆	.9375	.282	1 ²¹ ⁄64	1.3281	.399	1 ²³ / ₃₂	1.7187	.516
24. mm	.9449	.284	34. mm	1.3386	.402	44. mm	1.7323	.520
61/64	.9531	.286	1 ¹¹ / ₃₂	1.3437	.404	14%4	1.7344	.521
24.5 mm	.9646	.290	34.5 mm	1.3583	.408	13%4	1.7500	.526
31/32	.9687	.291	1 ²³ / ₆₄	1.3594	.408	44.5 mm	1.7520	.526
25. mm	.9843	.296	1 ³ / ₈	1.3750	.413	14%4	1.7656	.530
63/64	.9844	.296	35. mm	1.3780	.414	45. mm	1.7717	.532
1"	1.0000	.300	1 ² 5/ ₆₄	1.3906	.418	1 ² 5/ ₃₂	1.7812	.535
25.5 mm	1.0040	.302	35.5 mm	1.3977	.420	45.5 mm	1.7914	.538
1½4	1.0156	.305	1 ¹³ / ₃₂	1.4062	.422	1 ⁵¹ / ₆₄	1.7969	.540
26. mm	1.0236	.307	36. mm	1.4173	.426	46. mm	1.8110	.544
1⅓32	1.0312	.310	1 ² 7/ ₆₄	1.4219	.427	1 ¹³ / ₁₆	1.8125	.544
26.5 mm	1.0433	.313	36.5 mm	1.4370	.432	1 ⁵ ⁄ ₆₄	1.8281	.549
13/64	1.0469	.314	1½6	1.4375	.432	46.5 mm	1.8307	.550
11/16	1.0625	.319	1²%4	1.4531	.437	1 ² ⁄⁄ ₃₂	1.8437	.554
27. mm	1.0630	.319	37. mm	1.4567	.438	47. mm	1.8504	.556
15/64	1.0781	.324	1¹⁵⁄32	1.4687	.441	1 ⁵ ⁄ ₆₄	1.8594	.558
27.5 mm	1.0827	.325	37.5 mm	1.4764	.442	47.5 mm	1.8701	.562
1 ³ / ₃₂	1.0937	.329	1 ³¹ / ₆₄	1.4844	.446	1 1/8	1.8750	.563
28. mm	1.1024	.331	38. mm	1.4961	.449	48. mm	1.8898	.568
1 ⁷ / ₄	1.1094	.333	1 ¹ / ₂	1.5000	.451	15/64	1.8906	.568
28.5 mm	1.1220	.337	1 ³³ / ₆₄	1.5156	.455	129/32	1.9062	.573
11/8	1.1250	.338	38.5 mm 1 ¹ / ₃₂ 39. mm 1 ³ / ₆₄ 39.5 mm	1.5158	.455	48.5 mm	1.9095	.574
11/64	1.1406	.343		1.5312	.460	1 ⁵ % ₄	1.9219	.577
29. mm	1.1417	.343		1.5354	.461	49. mm	1.9291	.579
15/32	1.1562	.347		1.5469	.465	1 ¹ 5⁄ ₁₆	1.9375	.582
29.5 mm	1.1614	.349		1.5551	.467	49.5 mm	1.9488	.585

Drill	Diam. inches	Length of point inches	Drill	Diam. inches	Length of point inches	Drill	Diam. inches	Length of point inches
1 ⁶¹ / ₆₄	1.9531	.587	2 ¹¹ / ₃₂	2.3437	.704	69.5 mm	2.7362	.822
50. mm	1.9685	.591	2 ²³ / ₆₄	2.3594	.709	2 ³ / ₄	2.7500	.826
1 ³¹ / ₃₂	1.9687	.591	60. mm	2.3622	.710	70. mm	2.7559	.828
1 ⁶³ / ₆₄	1.9844	.596	2 ³ / ₈	2.3750	.713	2 ⁴ / ₆ / ₄	2.7656	.831
50.5 mm	1.9882	.597	60.5 mm	2.3819	.715	70.5 mm	2.7756	.834
2" 51. mm 2½4 51.5 mm 2⅓2	2.0000 2.0079 2.0156 2.0276 2.0312	.601 .603 .605 .609	2 ² 5/ ₆ 4 61. mm 2 ¹³ / ₃₂ 61.5 mm 2 ² // ₆ 4	2.3906 2.4016 2.4062 2.4213 2.4219	.718 .721 .723 .727 .728	2 ² 5/ ₃₂ 71. mm 2 ⁵ 1/ ₆ 4 2 ¹³ / ₁₆ 71.5 mm	2.7812 2.7953 2.7969 2.8125 2.8150	.836 .840 .840 .845 .846
23/64	2.0469	.615	2½ ₁₆	2.4375	.732	2 ⁵³ / ₆ 4	2.8281	.849
52. mm	2.0473	.615	62. mm	2.4409	.733	72. mm	2.8346	.851
21/16	2.0625	.619	2 ² % ₄	2.4531	.737	2 ² / ₃₂	2.8437	.854
52.5 mm	2.0669	.621	62.5 mm	2.4606	.739	72.5 mm	2.8543	.857
25/64	2.0781	.624	2 ¹⁵ / ₃₂	2.4687	.741	2 ⁵⁵ / ₆ 4	2.8594	.859
53. mm 2 ³ / ₃₂ 53.5 mm 2 ¹ / ₆₄ 2 ¹ / ₈	2.0867 2.0937 2.1063 2.1094 2.1250	.627 .629 .632 .633 .638	63. mm 2 ³¹ / ₆₄ 63.5 mm 2 ¹ / ₂ 2 ³³ / ₆₄	2.4803 2.4844 2.5000 2.5000 2.5156	.745 .746 .751 .751 .756	73. mm 2½ 25½ 73.5 mm 22½ 22%	2.8740 2.8750 2.8906 2.8937 2.9062	.863 .864 .868 .869 .873
54. mm	2.1260	.639	64. mm	2.5197	.757	74. mm	2.9134	.875
2% ₄	2.1406	.643	21 ¹ / ₃₂	2.5312	.760	2 ⁵ % ₄	2.9219	.878
54.5 mm	2.1457	.644	64.5 mm	2.5394	.763	74.5 mm	2.9331	.881
2% ₃₂	2.1562	.648	2 ³⁵ / ₆₄	2.5469	.765	2 ¹ % ₁₆	2.9375	.882
55. mm	2.1654	.650	65. mm	2.5590	.769	75. mm	2.9527	.887
2 ¹ / ₆ ⁴	2.1719	.652	2 ⁹ / ₁₆	2.5625	.770	2 ⁶ 1/ ₆ 4	2.9531	.887
55.5 mm	2.1850	.656	2 ³ / ₆ / ₄	2.5781	.774	2 ³ 1/ ₃₂	2.9687	.892
2 ¹ / ₁₆	2.1875	.657	65.5 mm	2.5787	.774	75.5 mm	2.9724	.893
2 ¹ 3/ ₆ ⁴	2.2031	.662	2 ¹ / ₃₂	2.5937	.779	2 ⁶ 3/ ₆ 4	2.9844	.897
56. mm	2.2047	.662	66. mm	2.5984	.781	76. mm	2.9921	.899
2½ ₃₂	2.2187	.666	2 ³ / ₆₄	2.6093	.784	3"	3.0000	.901
56.5 mm	2.2244	.668	66.5 mm	2.6181	.786	3½32	3.0312	.911
2 ¹⁵ ⁄ ₆₄	2.2344	.671	2 ⁵ / ₈	2.6250	.788	3½16	3.0625	.920
57. mm	2.2441	.674	67. mm	2.6378	.792	3¾32	3.0937	.929
2 ¹ ⁄ ₄	2.2500	.676	2 ⁴ 1/ ₆₄	2.6406	.793	3½8	3.1250	.939
57.5 mm	2.2638	.680	2 ²¹ / ₃₂	2.6562	.798	3 ⁵ / ₃₂	3.1562	.948
2 ¹ % ₄	2.2656	.681	67.5 mm	2.6575	.798	3 ³ / ₁₆	3.1875	.958
2 ⁹ % ₃ 2	2.2812	.685	2 ⁴³ / ₆₄	2.6719	.803	3 ³ / ₃₂	3.2187	.967
58. mm	2.2835	.686	68. mm	2.6772	.804	3 ¹ / ₄	3.2500	.976
2 ¹ % ₄	2.2969•	.690	2 ¹¹ / ₁₆	2.6875	.807	3 ⁹ / ₃₂	3.2812	.986
58.5 mm	2.3031	.692	68.5 mm	2.6968	.810	35/16	3.3125	.995
25/16	2.3125	.695	2 ⁴⁵ / ₆₄	2.7031	.812	311/ ₃₂	3.3437	1.004
59. mm	2.3228	.698	68. mm	2.7165	.816	33/8	3.3750	1.014
2 ²¹ / ₆ 4	2.3281	.699	2 ²³ / ₃₂	2.7187	.817	31/ ₁₆	3.4375	1.033
59.5 mm	2.3425	.704	2 ⁴ // ₆₄	2.7344	.821	31/ ₂	3.5000	1.051

DRILLS FOR TAPPED HOLES*

Thomas dies		Drill size		Anarasi - ata 07
Thread size and T.P.I.	Decimal	Fraction and gauge No.	mm	Approximate % thread depth
No. 0—80	0.0453 0.0469 0.0492 0.0512 0.0531	3/64	1.25 1.3	91 81 68 54 42
No. 1—64	0.0531 0.0550 0.0571 0.0591 0.0610 0.0625	54 1/16	1.5	98 88+ 78 68 59
No. 1—72	0.0550 0.0571 0.0591 0.0610 0.0625 0.0629 0.0650	54 1/16	1.5	100 88 77 66 58 55 45
No. 2—56	0.0629 0.0650 0.0670 0.0700 0.0730 0.0760	51 50 49 48		99 90+ 82 69 56 43
No. 2—64	0.0670 0.0700 0.0730 0.0760	51 50 49 48		94— 79 64 49
No. 3—48	0.0730 0.0760 0.0781 0.0810 0.0827 0.0860	49 48 5/64 46	2.1	96 85 77 66+ 60 48
No. 3—56	0.0760 0.0781 0.0810 0.0827 0.0846 0.0860	48 5/64 46	2.1	99 90 77 + 70 62 56

 $^{^\}star Use$ of some of the larger drill sizes may result in threads that do not meet UN tolerances. Refer to internal thread standards.

Thread size		Drill size		
and T.P.I.	Decimal	Fraction and gauge No.	mm	- Approximate % thread depth
No. 4—40	0.0810	46		95
	0.0827		2.1	90
	0.0860	44		80
	0.0890	43		71
	0.0906		2.3	66
	0.0937	3/32		56
	0.0960	41		49
No. 4—48	0.0860	44		00
140. 4—40	0.0890	44		96
	0.0890	43	1 22	85
	0.0906	2 /22	2.3	79
	0.0960	3/32		67
		41		59
	0.0995	39		46
No. 5—40	0.0937	3/32		96
	0.0960	41		89
	0.0995	39		78
	0.1024		2.6	70
	0.1040	37		65
	0.1065	36		57+
No. 5—44	0.0960	41		00
140. 5—44	0.0995	41 39		98
	0.1024	39	2.0	86
	0.1044	37	2.6	76
	0.1040	36		71
	0.1065			63
	0.1054	7/64		53
No. 6—32	0.0995	39		95
	0.1024		2.6	87 <i>+</i>
	0.1040	37	1	83+
	0.1065	36	1	78
	0.1094	7/64	1	70 +
ļ	0.1130	33	1	62
	0.1160	32		54
No. 6—40	0.1065	36		07.1
140. 0-40	0.1065		1	97+
	0.1094	7/64		88
1		33		77
Ì	0.1160	32		68
İ	0.1200	31		65

DRILLS FOR TAPPED HOLES (Continued)

Thread size		Drill size		Approximate %
and T.P.I.	Decimal	Fraction and gauge No.	m m	thread depth
No. 8—32	0.1250	1/8		96
	0.1285	30		87
	0.1299		3.3	84
	0.1339		3.4	74
	0.1360	29		69
	0.1378		3.5	64+
	0.1406	9/64		57+
N- 0 00	0.1005	20		00
No. 8—36	0.1285	30	0.0	98
	0.1299		3.3	94
	0.1339		3.4	83+
	0.1360	29		77+
	0.1378		3.5	72+
	0.1406	9/64		65
	0.1440	27		55
No. 10—24	0.1360	29		99+
110. 10-24	0.1378	23	3.5	96
	0.1406	9/64	3.3	91
	0.1440	9/0 4 27		85
	0.1470	26		79
	0.1520	24		70
	0.1562	5/32		62
No. 10—32	0.1520	24		93+
	0.1562	5/32		83
	0.1610	20		71
	0.1660	19		59
	0.1695	18		50
	0.1033	10		30
No. 10—40	0.1610	20		89
	0.1660	19		74
	0.1695	18		63
	0.1719	11/64		56
N 40 04	0.1000			
No. 12—24	0.1660	19		92
	0.1695	18		86
	0.1719	11/64		81+
	0.1730	17		79
	0.1770	16		72
	0.1800	15		66+
	0.1850	13	4.7	57
			L	L

Thread size	T	Drill size		
Thread size and T.P.I.	Deci mal	Fraction and gauge No.	m m	Approximate % thread dept h
No. 12—28	0.1695 0.1719 0.1730 0.1770 0.1800 0.1850 0.1875	18 11/64 17 16 15 13 3/16	4.7	100 95 92+ 84 77+ 67 61
No. 12—32	0.1770 0.1800 0.1850 0.1875	16 15 13 3/16	4.7	96 88+ 76 70
1/4—20	0.1850 0.1875 0.1910 0.1935 0.1960 0.1990 0.2031 0.2090	13 3/16 11 10 9 8 13/64	4.7	100 96 91 87 83 78+ 72 63
1/4—24	0.1960 0.1990 0.2031 0.2090 0.2130	9 8 13/64 4 3		100 94 86+ 76- 68
1/4—28	0.2090 0.2130 0.2187	4 3 7/32		88 80 67
1/4—32	0.2090 0.2130 0.2187 0.2244	4 3 7/32	5.7	100 91 77 63
1/4—36	0.2187 0.2244 0.2280	7/32 1	5.7	87— 71 61
1/4—40	0.2187 0.2244 0.2280	7/32 1	5.7	96 79 68—

DRILLS FOR TAPPED HOLES (Continued)

Thread size		Drill size		
Thread size and T.P.I.	Deci mal	Fraction and gauge No.	mm	Approximate % thread depth
5/16—18	0.2460	D		92
	0.2500	1/4 (E)		86+
	0.2520	-/ . \-/	6.4	84
	0.2570	F	0.7	77
	0.2610	Ġ		71
	0.2656	17/64		65
5/16—24	0.2610	G		95
	0.2656	17/64		86+
	0.2720	1 27/01	i	75
	0.2770	j		65+
5/16—32	0.2720			99+
	0.2770	j		87
	0.2812	9/32		77
3/8—16	0.2969 °	19/64		96
	0.3020	Ń		90
	0.3071		7.8	83
	0.3125	5/16		1 77
	0.3160	0		72+
	0.3230	P		64
3/8—24	0.3281	21/64		86+
	0.3320	Q		79
	0.3390	Ř		66+
3/8—32	0.3390	R		88+
	0.3437	11/32		77
	0.3480	S		66+
7/16—14	0.3480	S		96
	0.3543		9.0	89+
-	0.3594	23/64		84
	0.3680	U		75
	0.3750	3/8		67
7/16—20	0.3750	3/8		96
-	0.3860	W		79
	0.3906	25/64		72
	0.3970	X		62+
7/16—24	0.3860	w		95
	0.3906	25/64		86+
	0.3970	X		74+
	0.4062	13/32		58—

Throad size		Drill size		Annual mate of
Thread size and T.P.I.	Decimal	Fraction and gauge No.	m m	Approximate % thread depth
7/16—28	0.3970	Х		87
	0.4062	13/32		67
1/2—12	0.3970	Х		95
	0.4062	13/32	1	86+
	0.4219	27/64	1	72
	0.4375	7/16		58—
1/2—13	0.4062	13/32		94
	0.4219	27/64	1	78
	0.4375	7/16		62+
1/2—16	0.4219	27/64		96
',	0.4375	7/16		77
	0.4531	29/64		58—
1/2—20	0.4375	7/16		96
'/	0.4531	29/64		72
	0.4687	15/32		48
1/2—24	0.4531	29/64		86
1/2—24	0.4687	15/32		57+
		 		-
1/2—28	0.4531	29/64		100+
	0.4687	15/32		67
9/16—12	0.4531	29/64		100+
'	0.4687	15/32		86+
	0.4844	31/64		72
	0.5000	1/2		58
9/16—16	0.4844	31/64		97
,	0.5000	1/2		17
	0.5118		13.0	62
	0.5156	33/64		57+
9/16—18	0.5000	1/2		86+
,	0.5118	-/-	13.0	70
	0.5156	33/64		65
9/16—24	0.5118		13.0	93+
3,	0.5126			86+
	0.5312	17/32		58—
9/16—27	0.5312	17/32		65
•	0.5216	'		85

DRILLS FOR TAPPED HOLES (Continued)

Th		Drill size							
Thread size and T.P.I.	Decimal	Fraction and gauge No.	m m	Approximate % thread depth					
5/8—11	0.5468 0.5312	17/32		66 79					
5/8—12	0.5468 0.5312	17/32		72 87					
5/8—18	0.5709 0.5625	9/16	14.5	75 87					
5/8—27	0.5906 0.5807		15.0	71 92					
11/16—11	0.6093 0.5937	19/32		66 79					
11/16—16	0.6250	5/8		77					
3/4—10	0.6562 0.6406	21/32 41/64		72 84					
3/4—12	0.6718 0.6562	43/64 21/32		72 86					
3/4—16	0.6875	11/16		77					
3/4—27	0.7087		18.0	86					
7/8—9	0.7812 0.7656 0.7500	25/32 49/64 3/4		65 76 86					
7/8—12	0.7968 0.7812	51/64 25/32		72 87					
7/8—14	0.8125 0.8071 0.7968	13/16 51/64	20.5	67 73 84					
7/8—27	0.8437	27/32		65					
1—8	0.8750 0.8593	7/8 55/64		77 87					
1—12	0.9218 0.9062	59/64 29/32		72 86`					
1—14	0.9375 0.9218	15/16 59/64		67 84					
1—27	0.9687 0.9646	31/32	24.5	65 74					

		Drill size		
Thread size and T.P.I.	Deci mal	Fraction and gauge No.	m m	Approximate % thread depth
1-1/8—7	0.9844	63/64		76
1-1/8—12	1.0469	1-3/64		72
1-1/4—7	1.1094	1-7/64		75
1-1/4—12	1.1719	1-11/64		72
1-3/8—6	1.2187	1-7/32		72
1-3/8—12	1.2969	1-19/64		72
1-1/2—6	1.3281	1-21/64		79
1-1/2—12	1.4219	1-27/64		72
1-5/8—5-1/2	1.4531	1-29/64		73
1-3/4—5	1.5469	1-35/64		78
1-3/4—10	1.6562	1-21/32		72
1-7/8—5	1.6875	1-11/16		72
2—4-1/2	1.7812	1-25/32		76
2—10	1.9062	1-29/32		72
2-1/8—4-1/2	1.9062	1-29/32		76
2-1/4-4-1/2	2.0312	2-1/32		76
2-1/4—8	2.1250	2-1/8		77
2-3/8—4	2.1250	2-1/8		77
2-1/2—4	2.2500	2-1/4		77
2-1/2—8	2.3750	2-3/8		77
2-3/4—4	2.5000	2-1/2		77
2-3/4—8	2.6250	2-5/8		77
3—3-1/2	2.7187	2-23/32		76
3—4	2.7500	2-3/4		77
3—8	2.8750	2-7/8		77
3-1/4—4	3.0000	3		77
3-1/2—4	3.2500	3-1/4		77
3-3/4—4	3.5000	3-1/2		77
4—4	3.7500	3-3/4		77

TABLE OF CUTTING SPEEDS

Feet per min.	15*	20	25	30	35	40	45	50	55	60
Dia.				R	evolutions	per minut	ł B		L	ı
1/16	917	1223	1528	1834	2140	2445	2751	3057	3363	3668
1/8	459	611	764	917	1070	1222	1375	1528	1681	1834
3/16	306	408	509	611	713	815	917	1019	1121	1222
1/4	229	306	382	458	535	611	688	764	851	917
5/16	183	245	306	367	428	489	550	611	672	733
3/8	153	204	255	306	357	408	458	509	560	611
7/16	131	175	218	262	306	349	393	437	481	524
1/2	115	153	191	229	268	306	344	382	420	459
9/16	102	136	170	204	238	272	306	340	373	407
5/8	92	123	153	184	214	245	276	306	337	367
11/16	83	111	138	167	194	222	249	273	300	333
3/4	76	102	127	153	178	203	229	254	279	306
13/16	71	95	119	142	166	190	213	237	261	284
7/8	66	87	109	131	153	175	196	219	241	262
15/16	61	81	101	122	142	163	183	204	224	244
1	57	76	96	115	134	153	172	191	210	229
1-1/16	54	72	90	108	126	144	162	180	197	215
1-1/8	51	68	85	102	119	136	153	170	187	204
1-3/16	48	64	81	97	113	129	145	161	177	193
1-1/4	46	61	76	92	107	123	137	153	168	183
1-5/16	44	58	73	87	102	116	131	146	160	175
1-3/8	42	56	70	83	97	111	125	139	153	167
1-7/16	40	53	66	80	93	106	119	133	146	159
1-1/2	38	51	64	76	90	102	115	127	140	153
1-9/16	37	49	61	73	85	98	110	122	134	146
1-5/8	35	47	59	71	82	94	106	117	129	141
1-11/16	34	45	57	68	79	90	102	113	124	136
1-3/4	33	44	55	66	76	87	98	109	120	131
1-13/16	32	42	53	63	74	84	95	106	116	127
1-7/8	31	41	51	61	71	82	92	102	112	122
1-15/16	30	39	49	59	69	79	89	99	108	118
2	29	38	48	57	67	76	86	96	105	115
2-1/8	27	36	45	54	63	72	81	90	99	108
2-1/4	25	34	42	51	59	68	76	86	94	102
2-3/8	24	32	40	48	56	64	73	81	89	97
2-1/2 2-5/8 2-3/4 2-7/8	23 22 21 20 19	31 29 28 26 26	38 36 35 33 32	46 44 42 40 38	54 51 49 46 45	61 58 56 53 51	69 65 63 59 57	76 73 70 66 64	84 80 77 73 70	92 87 83 79 76
3-1 /8	18	24	31	37	43	49	55	61	67	73
3-1 /4	18	23	29	35	41	47	53	59	64	70
3-3 /8	17	23	28	34	40	45	51	57	62	68
3-1 /2	16	22	27	33	38	44	49	55	60	66
3-5 /8	16	21	26	32	37	42	47	52	58	63
3-3/4	15	20	26	31	36	41	46	51	56	61
3-7/8	15	20	25	30	35	39	44	49	54	59
4	14	19	24	29	33	38	43	48	53	57
4-1/4	14	18	23	27	31	36	40	45	49	54
4-1/2	13	17	21	25	30	34	38	42	47	51
4-3/4	12	16	20	24	28	32	36	40	44	48
5	12	15	19	23	27	31	34	38	42	46

^{*}See page 167 for formula for speeds less than 15 sfm.

Feet per min.	65	70	75	80	85	90	95	100	110	120
Dia.				Re	volutions p	er minute				
1 /16	3974	4280	4586	4891	5197	5502	5800	6114	6725	7337
1 /8	1986	2139	2292	2445	2598	2750	2903	3056	3362	3667
3 /16	1325	1426	1529	1630	1732	1834	1936	2038	2242	2446
1 /4	994	1070	1147	1222	1300	1376	1453	1528	1681	1734
5 /16	794	856	917	978	1039	1100	1161	1222	1344	1466
3/8	662	713	764	815	865	916	967	1018	1121	1222
7/16	568	611	656	699	743	786	830	874	961	1049
1/2	497	535	573	611	649	688	726	764	840	917
9/16	441	475	509	543	577	611	645	679	747	813
5/8	398	428	459	489	520	552	581	612	673	736
11/16	360	389	416	444	472	500	527	555	611	666
3/4	330	357	381	409	432	458	483	508	559	610
13/16	308	332	356	379	403	427	450	474	521	569
7/8	285	306	329	349	372	392	416	438	482	526
15/16	265	285	305	326	346	366	387	407	448	488
1	258	267	287	306	325	344	363	382	420	458
1-1/16	233	251	269	287	305	323	341	359	395	431
1-1/8	221	238	255	272	289	306	324	340	374	408
1-3/16	209	225	242	258	274	290	306	322	354	386
1-1/4	199	214	230	245	260	274	291	306	337	367
1-5/16	189	204	218	233	247	262	276	291	320	349
1-3/8	180	195	208	222	236	250	264	278	306	334
1-7/16	172	186	199	212	225	239	252	265	292	318
1-1/2	165	178	191	204	216	230	241	254	279	305
1-9/16	159	171	183	195	207	220	232	244	268	293
1-5/8	152	165	176	188	199	212	222	234	257	281
1-11/16	147	158	170	181	192	203	215	226	249	271
1-3/4	142	153	164	175	185	196	207	218	240	262
1-13/16	137	148	158	169	179	190	200	211	232	253
1-7/8	133	143	153	163	173	184	194	204	224	244
1-15/16	128	138	148	158	167	177	187	197	217	236
2	124	134	143	153	162	172	181	191	210	229
2-1/8	117	126	135	144	153	162	171	180	198	216
2-1/4	111	119	128	136	145	153	162	170	187	204
2-3/8	105	113	121	129	137	145	153	161	177	193
2-1/2	100	107	114	122	130	138	145	153	168	184
2-5/8	94	102	109	116	123	131	138	145	160	174
2-3/4	90	97	104	111	118	125	132	139	153	167
2-7/8	86	92	99	106	112	119	125	132	145	158
3	83	89	95	102	108	114	121	127	140	152
3-1 /8	79	85	92	98	104	110	116	122	134	146
3-1 /4	76	82	88	94	100	105	111	117	129	140
3-3 /8	74	79	85	90	96	102	108	113	124	136
3-1 /2	71	76	82	87	93	98	104	109	120	131
3-5 /8	68	74	79	84	89	95	100	105	116	126
3-3/4	66	71	77	82	87	92	97	102	112	122
3-7/8	64	69	74	79	84	89	94	99	108	118
4	62	67	72	76	81	86	91	96	105	115
4-1/4	58	63	67	72	76	81	85	90	99	108
4-1/2	55	59	64	68	72	76	81	85	93	102
4-3/4	52	56	60	64	68	72	76	80	88	97
5	50	54	57	61	65	69	73	76	84	92

TABLE OF CUTTING SPEEDS (Continued)

Feet per min.	125	130	140	150	160	170	175	180	190	200
Dia.				Re	volutions	oer minute				
	7040	7040	0500	0171	0700					
1/16	7643	7948	8560	9171	9782	5195	5040	5501	5806	C110
1/8	3820	3973 2649	4278 2853	4584 3055	4890 3261	3465	5348 3567	3668	3872	6112 4076
3/16	2548	1986	2853	2292	2445	2598	2674	2750	2903	3056
1/4	1910 1527	1589	1711	1833	1955	2077	2139	2200	2322	2444
5/16	1527	1269	1/11	1033	1900	20//	2139	2200	2322	2444
3 /8	1273	1323	1425	1527	1629	1731	1782	1832	1934	2036
7 /16	1093	1136	1224	1311	1398	1486	1530	1573	1661	1748
1/2	955	993	1070	1146	1222	1299	1337	1375	1452	1528
9/16	869	883	951	1019	1086	1154	1188	1222	1290	1358
5/8	765	796	857	918	979	1040	1071	1102	1163	1224
11/16	692	722	770	833	888	944	971	999	1054	1110
3/4	635	661	711	762	813	864	889	914	965	1016
13/16	593	616	664	711	758	806	830	853	901	948
7/8	548	569	613	657	701	745	767	788	832	876
15/16	509	529	570	611	651	692	712	733	773	814
1	478	497	535	573	611	649	669	688	726	764
1 1-1/16	4/8	497	503	539	579	610	628	646	682	718
	449	442	476	510	544	578	595	612	646	680
1-1/8	423	419	451	483	515	547	564	580	612	644
1-3/16 1-1/4	383	398	428	459	490	520	536	551	581	612
1-1/4	363	330	420	433	430	320	330	331	301	
1-5/16	351	378	407	437	466	495	509	524	553	582
1-3/8	348	361	389	417	445	472	487	500	528	556
1-7/16	331	345	371	398	424	451	464	477	504	530
1-1/2	318	330	356	381	406	432	445	457	483	509
1-9/16	305	317	342	366	390	415	427	439	464	488
1-5/8	293	304	328	351	374	398	410	421	445	468
1-11/16	283	294	316	339	362	384	396	407	429	452
1-3/4	273	283	305	327	349	371	382	392	414	436
1-13/16	264	274	295	317	338	359	369	380	401	422
1-7/8	255	265	286	306	326	347	357	367	388	408
1-15/16	246	256	276	296	315	335	345	355	374	394
2	239	248	267	287	306	325	334	344	363	382
2-1/8	225	234	252	270	288	306	315	324	342	360
2-1/4	213	221	238	255	272	289	298	306	313	340
2-3/8	201	209	225	242	258	274	282	290	306	322
	191	199	213	230	245	260	268	275	291	306
2-1/2 2-5/8	181	189	203	218	232	247	254	261	276	290
2-3/8	174	181	195	209	222	236	242	250	264	278
2-3/4	165	172	185	198	211	224	231	238	251	264
3	159	165	178	191	203	216	222	228	241	254
	 	+	-			+	 	 	+	
3-1/8	153	159	171	183	195	207	214	219 211	232 222	244 234
3-1/4	146	152	164	176	188	199 192	205 198	203	215	234
3-3/8	141	147	158 153	170 164	181 174	186	198	196	207	218
3-1/2 3-5/8	136 131	142 137	147	158	168	179	184	189	200	210
		+			+				+	
3-3/4	128	133	143	153	163	175	179	184	194	205
3-7/8	123	128	138	148	158	167	172	177	186	197
4	120	124	134	143	153	163	167	172	182	191
	112	117	126	135	144	153	157	162	171	180
4-1/4	100	110	119	127	136	144	148	153	161	170
4-1/4 4-1/2	106	110								
	106	105	113	121	129	137	141	145	153	161

Feet per min.	210	220	230	240	250	260	270	280	290	300
Dia.				R	evolutions	per minut	e		·	
1/16 1/8 3/16 1/4 5/16		 6723 4482 3361 2689	7028 4686 3514 2811	7334 4890 3667 2934	7639 5093 3820 3056	7945 5297 3972 3178	8251 5501 4125 3300	8556 5705 4278 3423	8862 5908 4431 3545	9171 6114 4584 3666
3/8	2139	2241	2343	2445	2546	2648	2750	2852	2954	3057
7/16	1833	1921	2008	2095	2183	2270	2357	2445	2532	2620
1/2	1604	1681	1757	1833	1910	1986	2063	2139	2215	2292
9/16	1426	1494	1562	1630	1698	1766	1833	1901	1969	2037
5/8	1283	1345	1406	1467	1528	1589	1650	1711	1772	1834
11 /16	1167	1222	1278	1333	1389	1445	1500	1556	1611	1667
3 /4	1070	1120	1171	1222	1273	1324	1375	1426	1477	1528
13 /16	987	1034	1081	1128	1175	1222	1269	1316	1363	1410
7 /8	917	960	1004	1048	1091	1135	1179	1222	1266	1310
15 /16	857	896	937	978	1019	1059	1100	1141	1182	1222
1	802	840	879	917	955	993	1031	1070	1108	1146
1-1/16	755	791	827	863	899	935	971	1007	1043	1078
1-1/8	714	747	781	815	849	883	917	951	985	1018
1-3/16	675	708	740	772	804	836	868	901	933	965
1-1/4	641	672	703	733	764	794	825	856	886	917
1-5/16	611	640	669	698	728	757	786	815	844	873
1-3/8	584	611	639	667	694	722	750	778	806	833
1-7/16	558	584	611	638	664	691	717	744	771	797
1-1/2	535	560	586	611	637	662	688	713	738	764
1-9/16	514	538	562	587	611	636	660	684	709	733
1-5/8	493	517	541	564	588	611	635	658	682	705
1-11/16	475	498	521	543	566	589	611	634	656	679
1-3/4	459	481	502	524	546	567	589	611	633	654
1-13/16	443	464	485	506	527	548	569	590	611	632
1-7/8	428	449	469	489	509	530	550	570	591	611
1-15/16	414	434	453	473	493	513	532	552	572	591
2	402	421	439	458	477	497	516	535	554	573
2-1/8	378	395	413	431	449	467	485	503	521	539
2-1/4	357	374	390	407	424	441	458	475	492	509
2-3/8	338	353	370	386	402	418	434	450	466	482
2-1/2	321	336	344	367	382	397	413	428	443	458
2-5/8	306	320	335	349	364	378	393	407	422	436
2-3/4	292	306	319	333	347	361	375	389	403	416
2-7/8	279	292	306	319	332	345	359	372	385	398
3	267	279	293	306	318	331	344	357	369	381
3-1 /8	257	268	281	293	306	318	330	342	354	366
3-1 /4	247	259	270	282	294	306	317	329	341	352
3-3 /8	238	249	260	272	283	294	306	317	328	339
3-1 /2	229	240	251	262	273	284	295	306	316	327
3-5 /8	221	232	242	253	263	274	285	295	306	316
3-3/4	214	224	234	244	255	265	275	285	295	305
3-7/8	207	217	227	237	246	256	266	276	285	295
4	201	210	220	229	239	248	258	267	277	286
4-1/4	189	198	207	216	225	234	243	252	261	269
4-1/2	178	187	195	204	212	221	229	238	246	254
4-3/4	167	177	185	193	201	209	217	225	233	241
5	160	168	176	183	191	199	206	214	222	229

TABLE OF CUTTING SPEEDS (Continued)

Feet per min,	325	350	375	400	425	450	475	500	525	550
Dia.	1	I		L	Revolutions	s per minu	ıte		<u> </u>	
1 /16	<u> </u>	T		1		·		ī ——	r	
1/16	-	10000	-	_	_	-	_	_	_	_
1/8 3/16	9935 6623	10699	11463	-					l	
	4966	7133	7642	8152	8661	9171	9680	10190	10699	11209
1 /4 5 /16		5348	5730	6112	6494	6876	7258	7640	8022	8404
3/16	3971	4277	4582	4888	5193	5499	5804	6110	6415	6721
3/8	3311	3566	3821	4076	4330	4585	4840	5095	5349	5604
7/16	2838	3057	3275	3494	3712	3930	4149	4367	4585	4084
1/2	2483	2675	2866	3057	3248	3439	3630	3821	4012	4203
9/16	2207	2377	2547	2717	2887	3056	3226	3396	3566	3736
5/8	1987	2139	2292	2445	2598	2751	2904	3057	3209	3362
11/16	1806	1041	0004	0000	0000	2521				
3/4	1655	1941 1783	2084	2223 2038	2362	2501	2640	2779	2917	3056
13/16	1528	1646	1910 1763	1881	2165	2292	2420	2547	2674	2802
7/8	1419	1528	1637		1998	2116	2233	2351	2469	2586
15/16	1324	1426	1528	1746 1630	1855 1732	1965	2074	2183	2292	2401
13/10	1324	1420	1328	1030	1/32	1834	1936	2038	2139	2241
1	1241	1337	1432	1528	1623	1719	1814	1910	2006	2101
1-1/16	1168	1258	1348	1438	1528	1618	1708	1798	1887	1977
1-1/8	1103	1188	1273	1358	1443	1528	1613	1698	1782	1867
1-3/16	1045	1126	1206	1287	1367	1448	1528	1609	1689	1769
1-1/4	993	1069	1146	1222	1299	1375	1452	1528	1604	1681
1-5/16	946	1018	1091	1164	1237	1309	1202	1455	1500	1001
1-3/8	903	972	1042	1111	1181	1250	1382 1320	1455	1528	1601
1-7/16	863	930	996	1063	1129	1196	1262	1389 1329	1458 1395	1528
1-1/2	827	891	955	1018	1082	1146	1202	1273	1335	1461 1400
1-9/16	794	855	916	978	1039	1100	1161	1222	1283	1344
	 									
1-5/8	764	822	881	940	999	1057	1116	1175	1234	1293
1-11/16	735	792	849	905	962	1018	1075	1132	1188	1245
1-3/4	709	764	818	873	927	982	1036	1091	1146	1200
1-13/16	685	737	790	843	895	948	1001	1054	1106	1159
1-7/8	662	713	764	815	866	917	968	1019	1069	1120
1-15/16	640	690	739	788	838	887	936	986	1035	1084
2	620	668	716	764	811	859	907	955	1002	1050
2-1/8	584	629	674	719	764	809	854	899	943	988
2-1/4	551	594	636	679	721	764	806	849	891	933
2-3/8	522	563	603	643	683	724	764	804	844	884
2-1/2	496	534	672	611	640	607	705		-	
2-1/2 2-5/8	496	534 509	573 545	611	649	687	725	764	802	840
2-3/8	472	486	545 520	582 555	618 590	654	691	727	763	800
2-3/4 2-7/8	431	465				625	659	694	729	763
3	413	465	498 477	531 509	564 541	598 572	631 604	664 636	697 668	730 700
								-		
3-1/8	397	427	458	488	519	549	580	611	641	672
3-1/4	381	411	440	470	499	528	558	587	616	646
3-3/8	367	396	424	452	481	509	537	566	594	622
3-1/2	354	381	409	436	463	490	518	545	572	600
3-5/8	342	368	395	421	447	474	500	527	553	579
3-3/4	331	356	382	407	433	458	484	509	534	560
3-7 /8	320	345	369	394	419	443	468	493	517	542
4	310	334	358	382	405	429	453	477	501	525
4-1/4	292	314	337	359	382	404	427	449	471	494
4-1/2	275	297	318	339	360	382	403	424	445	466
4-3/4	261	281	301	321	341	361	381	402	422	442
5	248	267	286	305	324	343	362	382	401	420
	L									

FRACTIONS OF ONE INCH AND DECIMAL AND METRIC EQUIVALENTS

Fractions Decimals Milli- of an Inch of an Inch meters	Fractions Decimals Milli- of an Inch of an Inch meters
1/64 .0156 0.397 1/32 .0313 0.794 3/64 .0469 1.191 1/16 .0625 1.588	33/64 .5156 13.097 17/32 .5313 13.494 35/64 .5469 13.891 9/16 .5625 14.287
5/64 .0781 1.985 3/32 .0938 2.381 7/64 .1094 2.778 1/8 .1250 3.175	37/64 .5781 14.684 19/32 .5938 15.081 39/64 .6094 15.478 5/8 .6250 15.875
9/64 .1406 3.572 5/32 .1563 3.969 11/64 .1719 4.366 3/16 .1875 4.762	41/64 .6406 16.272 21/32 .6563 16.688 43/64 .6719 17.085 11/16 .6875 17.462
13/64 .2031 5.159 7/32 .2188 5.556 15/64 .2344 5.953 1/4 .2500 6.350	45/64 .7031 17.859 23/32 .7188 18.256 47/64 .7344 18.653 3/4 .7500 19.050
17/64 .2656 6.747 9/32 .2813 7.144 19/64 .2969 7.541 5/16 .3125 7.937	49/64 .7656 19.447 25/32 .7813 19.843 51/64 .7969 20.240 13/16 .8125 20.637
21/64 .3281 8.334 11/32 .3438 8.731 23/64 .3594 9.128 3/8 .3750 9.525	53/64 .8281 .21.034 27/32 .8438 .21.430 55/64 .8594 .21.827 7/8 .8750 .22.224
25/64 .3906 9.922 13/32 .4063 .10.319 27/64 .4219 .10.716 7/16 .4375 .11.112	57/64 .8906 .22.621 29/32 .9063 .23.018 59/64 .9219 .23.415 15/16 .9375 .23.812
29/64 .4531 11.509 15/32 .4688 11.906 31/64 .4844 12.303 1/2 .5000 12.700	61/649531 .24.209 31/329688 .24.606 63/649844 .25.003 11.000025.400

HARDNESS CONVERSION TABLE NOTE: Hardness readings taken from curved surfaces will require correction.

Brinell indentation		hardness mber		hardness nber	Rockwell : ber super	superficial har ficial diamon	dness num- d penetrator	Tensile
diameter, m m	Standard ball	Tungsten- carbide ball	B scale	C scale	15 N scale	30 N scale	45 N scale	strength (approxi- mate) 1000 psi
2.45 2.50 2.55 2.60 2.65		627 601 578 555 534		58.7 57.3 56.0 54.7 53.5	89.6 89.0 88.4 87.8 87.2	76.3 75.1 73.9 72.7 71.6	65.1 63.5 62.1 60.6 59.2	347 328 313 298 288
2.70 2.75 2.80 2.85 2.90		514 495 477 461 444		52.1 51.0 49.6 48.5 47.1	86.5 85.9 85.3 84.7 84.0	70.3 69.4 68.2 67.2 65.8	57.6 56.1 54.5 53.2 51.5	274 264 252 242 230
2.95 3.00 3.05 3.10 3.15	429 415 401 388 375	429 415 401 388 375		45.7 44.5 43.1 41.8 40.4	83.4 82.8 82.0 81.4 80.6	64.6 63.5 62.3 61.1 59.9	49.9 48.4 46.9 4.53 43.6	219 212 202 193 184
3.20 3.25 3.30 3.35 3.40	363 352 341 331 321	363 352 341 331 321		39.1 37.9 36.6 35.5 34.3	80.0 79.3 78.6 78.0 77.3	58.7 57.6 56.4 55.4 54.3	42.0 40.5 39.1 37.8 36.4	177 170 163 158 152
3.45 3.50 3.55 3.60 3.65	311 302 293 285 277	311 302 293 285 277		33.1 32.1 30.9 29.9 28.8	76.7 76.1 75.5 75.0 74.4	53.3 52.2 51.2 50.3 49.3	34.4 33.8 32.4 31.2 29.9	147 143 139 136 131
3.70 3.75 3.80 3.85 3.90	269 262 255 248 241	269 262 255 248 241	100.0	27.6 26.6 25.4 24.2 22.8	73.7 73.1 72.5 71.7 70.9	48.3 47.3 46.2 45.1 43.9	28.5 27.3 26.0 24.5 22.8	128 125 121 118 114
3.95 4.00 4.05 4.10 4.15	235 229 223 217 212	235 229 223 217 212	99.0 98.2 97.3 96.4 95.5	21.7 20.5	70.3 69.7	42.9 41.9	21.5 20.1	111 109 104 103 100
4.20 4.25 4.30 4.35 4.40	207 201 197 192 187	207 201 197 192 187	94.6 93.8 92.8 91.9 90.7					99 97 94 92 90
4.45 4.50 4.55 4.60 4.65	183 179 174 170 167	183 179 174 170 167	90.0 89.0 87.8 86.8 86.0					89 88 86 84 83
4.70 4.80 4.90 5.00 5.10	163 156 149 143 137	163 156 149 143 137	85.0 82.9 80.8 78.7 76.4					82 80 73 71 67
5.20 5.30 5.40 5.50 5.60	131 126 121 116 111	131 126 121 116 111	74.0 72.0 69.0 67.6 65.7					65 63 60 58 56

WIRE GAUGES

Number of wire gauge	American or Brown & Sharpe, inches	Washburn & Moen Mfg. Co., A.S. & W. Roebling, inches	Imperial Wire Gauge, inches	Stubs' Steel Wire, inches	Birming- ham or Stubs' Iron Wire, inches
0000000 000000 00000 0000 000 000	.5800 .5165 .460 .40964 .3648 .32486	.4900 .4615 .4305 .3938 .3625 .3310 .3065	.5000 .4640 .4320 .4000 .3720 .3480 .3240		 .500 .454 .425 .380
1 2 3 4 5 6 7	.2893 .25763 .22942 .20431 .18194 .16202 .14428	.2830 .2625 .2437 .2253 .2070 .1920 .1770	.3000 .2760 .2520 .2320 .2120 .1920 .1760	.227 .219 .212 .207 .204 .201 .199	.300 .284 .259 .238 .220 .203 .180
8 9 10 11 12 13 14	.12849 .11443 .10189 .090742 .080808 .071961	.1620 .1483 .1350 .1205 .1055 .0915 .0800	.1600 .1440 .1280 .1160 .1040 .0920 .0800	.197 .194 .191 .188 .185 .182 .180	.165 .148 .134 .120 .109 .095
15 16 17 18 19 20 21	.057068 .05082 .045257 .040303 .03589 .031961 .028462	.0720 .0625 .0540 .0475 .0410 .0348 .0317	.0720 .0640 .0560 .0480 .0400 .0360	.178 .175 .172 .168 .164 .161	.072 .065 .058 .049 .042 .035
22 23 24 25 26 27 28	.025347 .022571 .0201 .0179 .01594 .014195	.0286 .0258 .0230 .0204 .0181 .0173 .0162	.0280 .0240 .0220 .0200 .0180 .0164 .0148	.155 .153 .151 .148 .146 .143	.028 .025 .022 .020 .018 .016
29 30 31 32 33 34	.011257 .010025 .008928 .00795 .00708 .006304	.0150 .0140 .0132 .0128 .0118 .0104	.0136 .0124 .0116 .0108 .0100 .0092	.134 .127 .120 .115 .112 .110	.013 .012 .010 .009 .008 .007
35 36 37 38 39 40	.005614 .005 .004453 .003965 .003531 .003144	.0095 .0090 .0085 .0080 .0075	.0084 .0076 .0068 .0060 .0052 .0048	.108 .106 .103 .101 .099 .097	.005 .004

FORMULAS Percent of Full Thread—see page 59.

Surface speed — feet/minute	
Round bars	$\frac{\text{Diameter} \times 3.1416 \times \text{RPM}}{12}$
(distance across corners)	$\frac{Size \times 3.1416 \times RPM \times 1.155}{12}$
Square bars	$\frac{\text{Distance} \times 3.1416 \times \text{RPM}}{12}$
(distance across corners)	$\frac{Size \times 3.1416 \times RPM \times 1.414}{12}$
	$\frac{\text{Distance} \times 3.1416 \times \text{RPM}}{12}$
Revolutions — number/minute	
Round bars	$\frac{SFM \times 12}{Diameter \times 3.1416}$
Hexagon bars	SFM × 12
rioxagon bars	Size $ imes$ 3.1416 $ imes$ 1.155
	$\frac{SFM \times 12}{Distance \times 3.1416}$
Square bars	SFM × 12
oquare bars	$Size \times 3.1416 \times 1.414$
	SFM × 12
Food	Distance \times 3.1416
Feed — inches/revolution	Feed inches per minute RPM
	$\frac{Diameter \times 3.1416 \times Feed}{SFM \times 12}$
inches/tooth	Feed No. of teeth
Time for actual machin- ing — seconds	$\frac{\text{Revolutions required} \times \text{60 sec.}}{\text{RPM}}$
Machine time	Time for machining $+$ idle time.
Tapping or threading time — seconds	$\frac{\text{No. of threads} \times \text{60 (sec.)}}{\text{Actual threading speed in RPM}}$
NOTE: All sizes are in inches.	

Carpenter Technology Corporation Wyomissing, PA 19610 U.S.A.

1-800-654-6543 Visit us at www.cartech.com For on-line purchasing in the U.S., visit www.carpenterdirect.com